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Figure 1: We conducted three steering experiments with (i) linear, (ii) circular, and (iii) sine-wave path shapes. The path width𝑊

is the distance perpendicular to the center-line of the path. The path amplitude 𝐴 (= path length) is the length of the center-line

of the path.𝑊 and𝐴 vary depending on the experimental condition. To prevent differences in the values for (only) the sine-wave

conditions from independently affecting the experimental results, the wave-length was fixed at 68.02 mm and wave-amplitude
was fixed at 19.89 mm. The cursor was shown as a black cross beneath the tip of the stylus. The cursor left a green trajectory

inside of the path, but a red trajectory when it was outside of the path. Effective Width We is calculated as the width that

encompasses 96% of the stroked trajectory. Effective Amplitude Ae is calculated as the total length of the stroked trajectory.

ABSTRACT

In Fitts’ law studies to investigate pointing, throughput is used to

characterize the performance of input devices and users, which is

claimed to be independent of task difficulty or the user’s subjec-

tive speed-accuracy bias. While throughput has been recognized

as a useful metric for target-pointing tasks, the corresponding for-

mulation for path-steering tasks and its evaluation have not been

thoroughly examined in the past. In this paper, we conducted three

experiments using linear, circular, and sine-wave path shapes to

propose and investigate a novel formulation for the effective pa-

rameters and the throughput of steering tasks. Our results show
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that the effective width substantially improves the fit to data with

mixed speed-accuracy biases for all task shapes. Effective width

also smoothed out the throughput across all biases, while the use-

fulness of the effective amplitude depended on the task shape. Our

study thus advances the understanding of user performance in

trajectory-based tasks.
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1 INTRODUCTION

Graphical user interfaces (GUIs) are often designed to involve

pointing to targets, but other interaction tasks also exist, such as

trajectory-based tasks, including crossing [3] and steering [1]. A

steering task requires users to pass through a constrained path, e.g.,

for the selection in a hierarchical menu, drawing a curve, or moving

around in 3D worlds [1]. Research on trajectory-based tasks has

thus the potential to contribute to the further development of novel

GUIs, for example, by enabling more efficient command selection

techniques [5, 34].

In addition to developing novel interaction techniques, under-

standing and modeling the performance of GUI operations is a

core topic in human-computer interaction (HCI) research. A well-

studied example of such a model is Fitts’ law, which models the

movement time MT of pointing and crossing operations [1, 13, 22].

Further, steering tasks are modeled by the steering law, which was

established on the basis of Fitts’ law as a series of crossing tasks [1].

For the pointing task, throughput TP based on effective param-

eters is used as a performance evaluation metric [17], which is

calculated from the index of difficulty ID of Fitts’ law and the ex-

perimentally measuredMT , as it combines speed and accuracy into

one value. TP has been claimed to represent the performance of

input devices [10] and user groups [31, 37], and to be independent

of task difficulty [23] and the speed-accuracy tradeoff [24].

The robustness of the throughput measure has been studied for

pointing tasks by computing TPs for multiple task difficulties, i.e.,

IDs [23]. However, for different speed-accuracy biases, TP calcu-

lated by the nominal ID using the target width𝑊 and its amplitude

𝐴 was found to be unstable [27]. Therefore, previous work used

effective parameters (i.e., the effective width We and effective am-
plitude Ae), which take into account the user’s actual movement

but not the task, to calculate ID, which smooths TP across different

speed-accuracy biases [24, 44]. The TP calculated using effective

parameters allows for fairer comparisons between different users

groups or input devices [24, 31, 37], even if speed-accuracy biases

vary across the participants and devices. This benefit was also con-

firmed to hold for crossing operations [18].

Previous work has also systematically applied We to steering

tasks [19, 46, 47], but the theoretical validity and the empirical

advantage of this approach in terms of smoothing speed-accuracy

biases have both not been evaluated in detail. For example, in pre-

vious studies [19, 46, 47], the nominal path width𝑊 was simply

replaced by We in an ad-hoc manner, based on the experimental

results. However, considering how the steering law was originally

modeled as a series of crossing tasks [1], the theoretical deriva-

tion of effective width from those for crossing put forth in recent

work [18] strengthens the rationale for replacing nominal width

with effective width. In addition, these studies have investigated

the impact ofWe on the ID-MT model, but did not investigate Ae
and TP . Thus, the exploration of the effects of effective parameters

in steering tasks remains incomplete in the field of HCI. This may

lead researchers to use an inappropriate metric, such as that a pre-

vious study [36] used the nominal TP , which is strongly affected

by subjective speed-accuracy biases, as we later show.

These previous studies demonstrate that effective width for steer-

ing tasks have been used without a theoretical basis, and we have

no knowledge on how using effective parameters normalizes the

speed-accuracy biases and yields stable TPs. Therefore, to examine

the applicability of TP and effective parameters for steering, we

conducted three experiments with different path shapes in this

work, each under three speed-accuracy biases (Figure 1). Our main

motivation is to establish an appropriate performance evaluation

metric to compare the steering performance of devices or users in

a better way. Thus, we focused on a fairer performance comparison

by smoothing the implicit speed-accuracy bias that participants

have when they perform path-steering experiments.

Since the steering task is modeled as a continuation of crossing

tasks [1], it is possible that the trends of TP stability, model fit, or

effect of task shape may be similar to those for crossing [18]. On

the other hand, for pointing and crossing, the effective parameters

are calculated from the distribution of the endpoints, whereas for

steering, the distribution of the entire trajectory between the strokes

could be used, which might lead to different conclusions. Therefore,

it is worthwhile to verify the results experimentally.

Our main novelty and contributions are as follows.

• This study theoretically applies Fitts’ throughput TP and

effective parameters, We and Ae , to steering tasks and we

analyze how the inclusion of We and Ae affects the model

fit and TP under different speed-accuracy biases. The verifi-

cation of TP for steering in our study is novel.

• We experimentally demonstrate that We smooths the speed-

accuracy bias for three path shapes, in terms of better model

fits and more stable TPs. In contrast, Ae improves the model

fit and stability of TP between task difficulties at each indi-

vidual speed-accuracy bias only in the circular steering task.

Identifying how We and Ae affect TP for steering is a novel

contribution of this study.

• We present implications for future steering-based user exper-

iments and for the evaluation of interaction techniques. For

example, to most fairly compare input devices, we suggest

using a sine-wave steering task, as our results show that

this task can yield most stable TPs across different speed-
accuracy biases.

2 RELATEDWORK

2.1 Fitts’ Law and Steering Law

Fitts’ law [13, 22] describes the relationship between the nominal

parameters of the pointing task (target width𝑊 and amplitude

between targets𝐴) and themovement timeMT . In HCIMacKenzie’s

Shannon capacity formulation is most frequently used [21]:

MT = 𝑎 + 𝑏IDn, IDn = log
2

(
𝐴

𝑊
+ 1

)
, (1)

where 𝑎 and 𝑏 are empirical constants and IDn designates the nom-

inal index of difficulty of the task. Although MacKenzie’s formula-

tion has been criticized from a theoretical point of view [11, 14, 16],

we use this model because it fits the experimental data well and

has also been validated in a crossing experiment [18] on which our

work is based.

In crossing tasks, theMT to select a target by passing through it is

also modeled by the same Fitts’ law [1]. Leveraging this observation,
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many crossing-based interaction methods have been proposed [3,

5, 26, 29, 33, 34].

In contrast, a steering task requires users to make a stroke inside

a constrained straight path, which is modeled in the steering law

through a sequence of crossing tasks [1]. By applying Fitts’ law

multiple times, this yields the following relationship:

𝑀𝑇 = 𝑎 + 𝑏IDn, IDn =
𝐴

𝑊
, (2)

where 𝐴 is the path length and𝑊 is its width. The steering law

was later extended to predict the task difficulty of various path-

steering operations in GUIs, such as widening and narrowing tun-

nels [39], passing through corners [28], and sequential linear path

segments [41], with many different input devices [2, 45].

Importantly, previous studies have demonstrated that MT and

error rate ER heavily depend on the input device and task, e.g., finger

touching showed the shortest MT for target pointing compared to

stylus and mouse, while a stylus was the best for dragging tasks [7].

Note that these “best” devices in terms of MT still exhibited also

the highest ERs. Similarly, Accot and Zhai demonstrated that mice

had the shortest MT in a linear-path steering task, while the stylus

was the fastest for circular paths [2]. For example, for a circular

steering task, MTs for all trials including errors were 2532 ms for

the mouse and 2193 ms for the pen tablet, indicating that the pen

tablet was faster. However, the error rate was 14.0% for the mouse

and 22.9% for the pen tablet, indicating that the mouse was more

accurate. Thus, it is not possible to determine directly which device

is “better”, as their error rates are unequal. As demonstrated by

such work, and because different devices are superior for various

GUI tasks, evaluating their performance only on the basis of the

TP for pointing is not sufficient, which motivated us to derive an

appropriate TP for steering.

2.2 Effective Parameters

Fitts’ law is based on two nominal parameters,𝑊 and 𝐴, which

do not represent the user’s actual behavior. In other words, the

task difficulty does not change even if users change their speed

or accuracy. For this reason, it is not possible to predict MT when

multiple speed-accuracy biases co-exist. To incorporate this bias,

Fitts’ law can be rewritten in accordance with the user’s behavioral

parameters as follows [8, 32]:

𝑀𝑇 = 𝑎 + 𝑏IDe, IDe = log
2

(
𝐴𝑒

𝑊𝑒
+ 1

)
, (3)

whereWe and Ae are effective width and amplitude, respectively,

calculated as follows [8, 24, 32]:

𝑊𝑒 = 4.133 × 𝜎, (4)

𝐴𝑒 = mean (movement distance), (5)

where 𝜎 is the standard deviation of the cursor endpoints [32].

Ae represents the actual average movement distance and We is

adjusted so that 96% of clicks fall inside the target. Both measures

are computed for movements along the task-axis [32].

Zhai et al. revealed that the IDe model showed a better fit in

terms of 𝑅2 when analyzing the data from multiple speed-accuracy

biases in a mixed manner (called the Mixed analysis condition) than

using the IDn model in pointing [44]. However, for each individual

bias (such as emphasizing either Accurate, Neutral, or Fast move-

ments), the IDn model showed a better fit. This indicates that the

IDe model improves the fit for mixed conditions at the expense of

higher prediction accuracy of the IDn model for each individual

bias. Kasahara et al. revealed that these tendencies identified by

Zhai et al. also apply to crossing [18].

The usefulness of applying effective width for steering tasks has

also been demonstrated [19, 46, 47]. For steering, the effective path

width We is defined as the standard deviation of the cursor coor-

dinate in the width axis, which is perpendicular to the movement

direction of the main task. Kulikov et al. showed that the use ofWe
improves the accuracy of MT prediction over𝑊 [19]. Zhou et al.

conducted a study of time-constrained steering tasks and identified

thatWe varied with the speed-accuracy tradeoff [46]. Zhou and Ren

showed that, with verbally instructed speed-accuracy biases, using

We improves the prediction accuracy ofMT for data with a mixture

of different speed-accuracy biases over the use of𝑊 alone [47].

They also showed that the model fit withWe was improved over

using𝑊 for some individual bias conditions. In contrast to pointing

and crossing tasks, in which We reduced the model fit for each

individual bias [18, 44], steering tasks exhibited better model fits in

a single-bias experiment by usingWe [19] and some individual bias

conditions [47]. Therefore,We in steering might be a more robust

parameter than We in pointing and crossing.

We acknowledge that previous work proposed an effective width

that dynamically changes in a single stroke, such that slower speeds

are interpreted as a narrower effective width [20]. However, the

purpose of our study is to establish a performance metric for device

comparison, when performing a steering task given by𝑊 and 𝐴.

That is, we intend to replace𝑊 and𝐴 in the steering law with other

values that take users’ speed-accuracy biases into account. Thus,

we calculate We and Ae as appropriate for the tasks we investigate

here, i.e., where 𝐴 and𝑊 do not change within a single stroke.

2.3 Throughput

For pointing tasks throughput TP is standardized by ISO9241-411

and is used as a performance metric of a user group and an input

device [17]. It is calculated as follows:

TP =
ID
MT

. (6)

Ideally, the performance of a user group or device should be in-

dependent of the difficulty of the task. TP is mostly independent

of IDs [23]; Typically when the ID changes, the MT also changes

accordingly, which means that the TP then remains almost constant.

The performance of a user group or device should also be inde-

pendent of the user’s subjective speed-accuracy bias. MacKenzie

et al. showed that TP is constant for different speed-accuracy bi-

ases. As demonstrated by their results, if the biases changed MTs
more than 10% compared to the result under the Neutral instruc-

tion, there was no significant difference in TP between different

biases [24]. On the other hand, Olafsdottir et al. showed that TP
cannot be smoothed between different speed-accuracy biases, if the

bias is extreme enough to force participants to ignore accuracy or

to ignore speed [27].

Kasahara et al. showed that TP for crossing has different stability

between IDs depending on the task shapes, such that TP tended to
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be large for low IDs and a fast bias condition [18]. The reason is

that even though in their a crossing with directional constraint task
the crossing task could be completed very quickly, the endpoint

distribution was very concentrated (i.e., both 𝜎 and MT became

small). This suggests that, as the MT prediction model for steering

was developed by summing a series of crossing tasks, the stability

of TP might differ between steering tasks and pointing tasks.

By directly applying the TP definition of pointing to a linear-path

steering task, Wiese et al. compared the performance under various

input latencies that were artificially generated [36]. However, they

used IDn and MT to calculate TP in their study, and when MT was

smaller as a result of a higher ER, TP became larger, which does not

consider the effect of accuracy. To validate such task performance,

it is thus important to theoretically establish the TP measure, which

then considers the effect of accuracy for steering appropriately.

3 DEFINITION OF EFFECTIVE PARAMETERS

FOR STEERING

3.1 Deriving the Steering Law with Effective

Parameters

The purpose of effective parameters is to more accurately describe

human behavior as people’s behaviors varywith the speed-accuracy

tradeoff [8, 32]. Since Fitts’ law with effective parameters holds for

a crossing task [18], we apply it to successive crossings (Figure 2 (i)).

The time of a single crossing with effective parameters, MT1, is

MT1 = 𝑎 + 𝑏ID1, ID1 = log
2

(
Ae
We

+ 1

)
. (7)

If a target is added in the center to divide the distance into two

equal parts (Figure 2 (ii)), the nominal distance for each crossing

motion becomes 𝐴/2. So, if there are 𝑁 + 1 targets (Figure 2 (iii)),

the nominal distance for each crossing motion is 𝐴/𝑁 . Thus, the

entire difficulty, ID𝑁 , using the effective parameters is

ID𝑁 = 𝑁 × log
2

(
Ae

𝑁 ×We
+ 1

)
. (8)

As 𝑁 approaches∞, this task is equivalent to steering (Figure 2 (iv)).

Several previous studies have hypothesized that the number of

movement corrections is finite [12, 15, 39, 43]. However, since ef-

fective parameters must be calculated from the variance of the

trajectory over the entire path, we used the 𝑁 → ∞ formulation,

which also has a theoretical justification [1]. We then obtain the

following model by applying a first-order Taylor series expansion.

ID∞ =
Ae

We ln 2
. (9)

As the constant of ln 2 can be absorbed by the slope 𝑏 in the steering

law, we arrive at the following final model.

MT = 𝑎 + 𝑏IDe, IDe =
𝐴𝑒

𝑊𝑒
. (10)

The calculations ofWe and Ae are described below.

3.2 Effective Width

The We is calculated using the standard deviation 𝜎 of the coor-

dinates distribution (Equation 4). In pointing and crossing, the

distribution of endpoint coordinates in the task-width direction of

a set of trials is used to calculate 𝜎 [8, 32]. In the same manner, for

steering, it is straightforward to use the distribution of coordinates

along the task-width direction for calculating 𝜎 . Since a single steer-

ing task trial includes many crossing task trials according to Accot

and Zhai’s derivation, the coordinates from all of the sample points

of a stroked trajectory can be used for this calculation (Figure 2).

However, due to the difference between steering and multiple indi-

vidual crossing trials, there are three possible derivations of 𝜎 for

steering.

• Calculate 𝜎 from a single trajectory from each trial

(𝜎trial ).

• Calculate 𝜎 for all trajectories for a single partici-

pant for each condition (𝜎participant ).

• Calculate 𝜎 from all trajectories of all participants

for each condition (𝜎condition).

The 𝜎condition approach cannot smooth the user’s subjective speed-

accuracy biases that varies among participants, since it is not cal-

culated for each participant. Also, it was not used in previous stud-

ies in pointing and crossing even though it is theoretically possi-

ble [8, 18, 24, 32], so we also did not adopt this for our work on

steering. The 𝜎participant measure is calculated in the same way as

for pointing and crossing [8, 18, 24, 32]. For pointing and crossing,

the 𝜎trial measure cannot be calculated from a single trial. However,

since a single steering trial contains multiple crossing tasks, 𝜎 can

be calculated from a single trial. Still, to maintain consistency with

previous work in this area [46, 47], we decided to adopt 𝜎trial as

the definition of 𝜎 for steering. In addition, 𝜎trial could potentially

incorporate the effect of participant’s speed-accuracy bias, which

varies across trials. From this definition of 𝜎 and the calculation

of Equation 4,We for steering becomes a width that encompasses

96% of the stroked trajectory for single trial. Even if a curved path

is involved, the method of derivingWe can be kept the same (Fig-

ure 2 (v)–(viii)). This is because We is calculated from the variance

of the trajectory perpendicular to the direction of task movement

within a single stroke. Hence, our definition of 𝜎 yields a consistent

computation of effective width for steering tasks. For all steering

tasks examined in this paper, We is thus the width that contains

96% of the stylus variance perpendicular to the direction of task

movement of a single stroke.

We point out that the value of 96% is essentially immaterial,

because this value can be changed by multiplying Equation 4 by a

constant. In the steering law (Equation 2), the value is multiplied

by the variable 𝑏, which can absorb any constant. Also, the perfor-

mance of user groups or devices can be compared by TP calculated

by Equation 6 as long as the same value of 96% is used.

3.3 Effective Amplitude

The Ae is calculated as the length of the path actually used by the

user. In previous work on pointing and crossing, Ae is defined as

the average distance along the task axis [18, 32]. That is, the dimen-

sional information is reduced to be along the task axis. However,

for steering (especially when involving curved paths), the total

distance should be used as Ae , without reducing the dimension

on the task axis (Figure 2 (v)–(viii)). The reason for this is that,

when stroke is made close to the inner diameter of a curve, the

actual stroked distance is obviously shorter than 𝐴. This aligns
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( i ) ( ii ) ( iii ) ( iv )

( v ) ( vi ) ( vii ) ( viii )

Figure 2: Definition of We and Ae for steering. The steering law is modeled as an infinite sequence of crossing tasks [1]. The We
and Ae for crossing are defined as shown in (i) and (v), respectively [18]. Following these definitions, the We and Ae become

(ii) and (vi) by adding one target between two targets. Then they become (iii) and (vii) by setting the number of splits to 𝑁 .

Finally, by letting 𝑁 approach ∞, the definition of We and Ae for steering becomes (iv) and (viii). Thus, We for steering was

defined as the width that encompasses 96% of the stroked trajectory. Ae for steering was defined as the total distance of the

stroked trajectory in one trial. These definitions hold whether the path is straight or curved. This is because the definition of

We is based on the center-line and Ae is based on the total length. Even if curves are involved, the width based on the distance

from the center-line and the total length are uniquely determined, so our definition is consistent. When curves are involved,

the total length of the task 𝐴 (the sum of the distances from the center of the start line to the center of the goal line) varies

depending on the number of divisions (v, vi, vii, viii). Let 𝐴𝑁 be the total length when there are 𝑁 divisions, then 𝐴𝑁 = 𝐴∞ for

𝑁 → ∞ ((iii) → (iv) and (vii) → (viii)). The linear path is a particular case where the 𝐴 is always the same length, even if the

number of targets changes (𝐴1 = 𝐴2 = · · · = 𝐴𝑁 = 𝐴∞ = 𝐴) (i, ii, iii, iv).

with Accot and Zhai’s definition of Ae for crossing as “the average

actual movement amplitude” [3]. Therefore, we interpreted Ae in

a single crossing task as the linear distance between the actual

start and end points (Figure 2 (i)). This definition and a formulation

through a limit 𝑁 → ∞ (Equation 9) lead us to adopt the total

distance of the trajectory for Ae in steering (Figure 2 (iv)). This

definition of Ae is consistent even if the path involves a curved path

(Figure 2 (v)–(viii)).

4 EXPERIMENTS

4.1 Overview

To verify whether We and Ae are applicable to steering tasks with

various path shapes, and to determine a better way to calculate TP
for steering tasks, we conducted three independent experiments,

each of which involved a different task and each conducted on a

different day. In our derivation ofWe and Ae , they are calculated

consistently for any path shape. We is calculated based on the

variance of the stroked trajectory perpendicular to the direction of

task movement, and Ae is calculated based on the total length of

the stroked trajectory.

For all task shapes, participants were given three different speed-

accuracy biases (Bias). Through this, we test whether effective

parameters can smooth the effect of the speed-accuracy biases, and

what the best way to calculate TP is.

4.2 Tasks

Since our effective parameters were derived based on linear steering

in section 3, we decided to first examine a linear path shape (Linear)

(Figure 1 (i)). For Linear, the task was to draw strokes from right

to left within a linear path
1
. The task began when the tip of the

stylus entered the white path area from the green area on the right

and ended when the tip of the stylus reached the blue area on the

left.

Then, because the steering law derived from the linear steering

is directly applicable to circular steering [1, 2, 15], we added an

experiment with a circular steering task (Circular) (Figure 1 (ii)).

We assume that the effect of Ae should be more pronounced in

circular steering, as many participants would try to shorten the

movement distance by making a circle close(r) to the inner diameter

in the Fast condition, resulting in 𝐴 ≫ Ae . For Circular, the task

was to draw clockwise circular strokes inside a circular path. The

task beganwhen the tip of the stylus crossed the black line displayed

at the center top of the circular path from left to right. The task

ended when the tip of the stylus went around the path and crossed

the line once again.

Finally, we added a sine-wave steering task (Sine-wave) (Fig-

ure 1 (iii)), which requires more frequent directional changes, in

contrast to the Circular task, which is only clockwise. Further,

as the Sine-wave condition would prevent the participants from

occluding any part of the future path by their hand, participants

1
To prevent the path from being occluded by the hand during the task, we restricted

participants to right-handed ones and used right-to-left strokes.
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would need to adhere more strictly to the bias instruction and

thus we could be able to more accurately examine the potential of

using effective parameters. For Sine-wave, the task was to draw

sine-wave strokes from right to left inside the path, and thus all

participants could see the future path without occlusion by their

hand. Paths were generated so that they always had the same width

perpendicular to the direction of the task movement (i.e., perpen-

dicular to the center-line). Thus, the inner curve of the sine-wave

overlaps, which yields a sharp feature. Such features do not cause

issues for steering along a sine-wave-shaped path, as they do not

interfere with the path width itself, only with the visual appearance.

The task began when the tip of the stylus entered the white path

area from the green area on the right and ended when the tip of

the stylus reached the blue area on the left.

For all task shapes, participants had to keep the tip of the stylus

on the screen during the task. If the tip of the stylus deviated from

the path, the participant had to return to the path as quickly as

possible. During the task, the trajectory of the tip of the stylus was

displayed in green inside the path and in red outside the path.

4.3 Participants

Twelve right-handed university students participated in the study

(4 females and 8 males, mean age 21.0, standard deviation 0.707

years). All participants performed all three experiments, except that

we had to replace one participant for the Sine-wave experiment for

reasons unrelated to the experiment. They received the equivalent

of 13 USD for compensation.

4.4 Apparatus

We used a laptop (Intel Core i7-11800H, GeForce RTX 3070 Laptop,

16GB RAM, Windows 10), LCD tablet (Wacom Cintiq 22, IPS, 344 ×
193 mm, 1920 × 1080 pixels), and stylus (Wacom Pro Pen 2). The

system was made with Unity and displayed in full screen mode.

4.5 Design

For each task, we used a 3Bias × 4𝐴 × 4𝑊 repeated-measures design.

The within-subjects factors were Bias, 𝐴, and𝑊 .

For Bias, we used three different speed-accuracy biases, Ac-

curate, Neutral, and Fast. Previous pointing studies had used

more extreme biases, such as max accuracy to ask participants to

“try to bring the cursor exactly to the target (zero pixel error)” or

max speed to ask them to “terminate the movements on average in

the vicinity of the target” [27]. Such instructions to maximize the

speed, i.e., to ignore the target almost completely, seem excessive

for device/participant evaluation studies that explore typical user

operations/movements. As our motivation is to examine if the TP
and effective parameters can smooth the influence of participants’

subjectively arising speed-accuracy biases for typical user move-

ments, performing the task “as fast and as accurate as possible,”

as well as one speed- and one accuracy-emphasized instructions

should sufficiently explore our current research objective. We did

not provide quantitative speed-accuracy bias information to partic-

ipants, but we encouraged a change in subjective speed-accuracy

bias through verbal instructions. The reason for this is that the

main purpose of our research is to establish a performance met-

ric that smooths the effects of implicit and subjective bias in user

experiments.

We used 3.968, 5.456, 8.928, and 22.32 mm for task width
2 𝑊 .

By including very small to very large task widths, we verified the

usefulness ofWe and Ae more extensively.

For 𝐴, we used four different task amplitude (= path length).

For Linear and Circular, we adjusted the value of 𝐴 so that the

IDn values were spread out as much as possible, and we used 89.28,

119.0, 173.6, and 210.8 mm for task amplitude
2 𝐴. However, for Sine-

wave, to prevent the potentially confounding effects of different

trial-end position in a sine-wave cycle on the task outcomes, we set

𝐴s so that the start and end positions were located at the peaks of

the waves. Thus we used 80.60, 161.2, 241.8, and 322.4 mm for 𝐴 in

Sine-wave
2
. The wavelength and amplitude parameters specific to

Sine-wave, were fixed at 68.02 mm and 19.89 mm for all conditions

(Figure 1 (iii)), which meant that the path length 𝐴 varied.

A task set comprised all combinations of 4𝐴 and 4𝑊 presented

in random order, with 16 such sets for Linear and 11 such sets
for Circular and Sine-wave, all of which were performed for

each Bias condition (with the first one considered as practice). As

circular-path and sine-wave steering takes considerably longer

than a linear task [2], we changed the number of sets from 16

to 11 to reduce participant fatigue, which could negatively affect

performance.

The 12 participants were randomly divided into two groups

of six. Group 1 was tested in the order of Neutral, Fast, and

Accurate. Group 2 was tested in the order of Neutral, Accurate,

and Fast. This ordering, i.e.,Neutral as the first condition, allowed

the participants to perform the task more rapidly/slowly in the

remaining two Bias conditions relative to the first one, which is

the same design as used in previous studies [18, 38, 42].

4.6 Procedure

First, and for each of the three tasks, we explained the task to par-

ticipants, i.e., to draw strokes without mistakes (without deviating

from the path). Participants sat in a chair in a comfortable pose and

operated the tablet tilted approximately 19 degrees from the desk.

Before starting each Bias condition, instructions for each Biaswere

given to the participants. Participants were instructed to complete

the task “as fast and as accurately as possible” for Neutral, “as

fast as possible without worrying about mistakes” for Fast, and “as

accurately as possible without worrying about time” for Accurate.

In addition, the current Bias label was always displayed in the

upper right corner of display during the task. To signal success or

an error in the task, audio feedback was presented when the stylus

was lifted. Previous study had shown that the type of feedback

(visual, auditory, or tactile) affects the results in MT and ER only

slightly in steering tasks [35], and thus we provided auditory error

feedback when the participant deviated even by one pixel. Since

the feedback in this study is identical across all task shapes, the

effects of feedback on user performance or speed-accuracy biases

should be consistent throughout the experiments. If the stylus was

2
To reduce the effect of round-off errors, we chose round numbers for the pixels

values for the task dimensions. To still enable others to replicate our work on different

hardware, we list the𝐴s and𝑊 s with the necessary precision in absolute units.
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lifted during a trial, the trial had to be restarted from the right start

area. When the stylus was lifted after reaching the left end area,

whether the task was successful or not, a button labeled “Next” was

displayed, as well as the time taken to complete the trial and the

number of deviations from the path. By pressing the Next button,
participants then proceeded to the next trial. Participants were

encouraged to take a break at any time between trials, whenever

they felt tired.

4.7 Measurement

The position of the tip of the stylus was recorded with a time stamp

during the trials at a 240 Hz sampling rate. The dependent variables

were ER, MT , 𝜎 , Ae , and TP . ER was the percentage of trials in

which the tip of the stylus deviated from the path at least once.MT
was the time taken for each trial to complete. For 𝜎 , we computed

the standard deviation from the center line of the path. We was

then calculated by multiplying 𝜎 by 4.133. Thus, We represents the

width containing 96% of the stroked trajectory. Ae was the total

distance of the stroked trajectory. TP was calculated byMT/ID, and
three types of TP were analyzed: TPn derived via IDn as calculated

from𝑊 and 𝐴, TPwe from IDwe as calculated viaWe and nominal

𝐴, and TPe derived via IDe as calculated fromWe and Ae .

5 RESULTS AND DISCUSSIONS

To make our results easier to understand, we present the analysis

of all three experiments as one here, and only distinguish among

the tasks in the following. For all task shapes, the first set for each

Bias condition was considered as practice, and the remaining tri-

als were analyzed. For Linear 8640 trials (3Bias × 4𝐴 × 4𝑊 × 15

sets ×12 participants), and for Circular and Sine-wave steering

tasks 5760 trials (3Bias × 4𝐴 × 4𝑊 × 10 sets ×12 participants) were
used for analysis. For all measures, the mean value for each par-

ticipant was calculated and analyzed. All of the trials including

errors were used for all analysis, similar to previous pointing and

crossing research [18, 23, 24]. The reason for including all trials

(including erroneous ones) is thatWe enables the calculation of the

overall effective task difficulty. Since ANOVA is robust against mild

normality violation [9, 25], we analyzed the data via RM-ANOVA.

For the post-hoc test, we analyzed data via pairwise tests with

Bonferroni p-value adjustments.

5.1 Error Rate ER
In total, we observed 922 errors (ER = 10.7%) for Linear, 1236

(ER = 21.5%) for Circular, and 1331 (ER = 23.1%) for Sine-wave.

The corresponding ANOVA results are presented in Table 1. We

found significant main effects for all independent variables (Bias,

𝐴, and𝑊 ). Significant interactions were observed for almost all

combinations (except Bias × 𝐴 ×𝑊 for Circular). Also, for all

task shapes, we identified significant differences for all Bias pairs

for ERs (Figure 3). This indicates that participants varied their ac-

curacy depending on the Bias condition. Comparing ERs across
task shapes

3
, tasks involving curves (Circular and Sine-wave)

showed higher ERs in the Fast condition. However, the difference

of ER in the Accurate condition was not as large as that in the

3
Since the three tasks are not directly comparable due to different experimental condi-

tions, we just compare the trends.

Fast condition. These suggest that even tasks including curves can

be completed accurately if instructed, but are more challenging to

complete at high speeds without errors.

5.2 Movement Time MT

For each task shape, the meanMT was 762.4 ms for Linear, 1710 ms

for Circular, 3155 ms for Sine-wave. The corresponding ANOVA

results are presented in Table 2. Significant main effects and inter-

actions were found for all independent variables and interactions.

For all task shapes, we identified significant differences for all Bias

pairs (Figure 4). That indicates that participants varied their speed

depending on the Bias condition.

5.3 Standard Deviation 𝜎 of Stroked Trajectory

to ComputeWe

The 𝜎 of each trial was averaged over each condition for analysis,

i.e., we used 48 (3Bias×4𝐴×4𝑊 ) 𝜎 values for each participant. The

corresponding ANOVA results are presented in Table 3. Significant

main effects were found for all independent variables, but not all

interactions were significant.

In addition, we validated the index of utilization (Iu) to verify

the utilization of path width. The Iu is an metric proposed by Zhai

et al. [44] and is calculated as follows:

Iu = log
2

(
We
𝑊

)
. (11)

By this calculation, Iu for pointing can represent the ratio of the

target width utilized. For steering, Iu can represent the ratio of

the path width utilized. If Iu is greater than 0, it means that an

excess width over the path width is being used; if Iu is less than 0,

it means that a width less than the path width is being used. The

corresponding ANOVA results are presented in Table 4. Significant

main effects were found for all independent variables, but not all

interactions were significant.

For all task shapes, the differences in Iu between Biases were

statistically significant for all combinations and Iu tended to be

larger when users emphasize speed more (Figure 5). In addition, Iu
tended to increase as IDn increased and the Iu differences between

Bias increased as IDn increased (Figure 6). These results indicate

that the utilization of the paths increases as the task tended to be

more difficult, and this trend strengthens as the user emphasizes

speed. Only for Linear, the utilization of path width was very

small in the low-IDn conditions. This suggests that easy Linear path

strokes, with low-IDn condition, do not require a directional change,

unlike Circular or Sine-wave strokes, and thus can complete the

task with small positional variations of the stylus. Furthermore,

in most conditions, the value of Iu was negative, suggesting that

a width smaller than 96% of the path width was actually used in

these steering tasks.

5.4 Total Distance of the Stroked Trajectory (Ae)

The Ae of each trial was averaged over each condition for analysis,

i.e., we used 48 (3Bias×4𝐴×4𝑊 )Ae values for each participant. The

corresponding ANOVA results are presented in Table 5. Significant

main effects were found for all independent variables.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kasahara et al.

Table 1: The ANOVA results for ER. Throughout this paper, ***, **, and * in the tables and graphs indicate 𝑝 < .001, 𝑝 < .01, and

𝑝 < .05, respectively. In the Table 1–5 and 8, yellow cells indicate 𝑝 < .05.

Linear Circular Sine-wave

Factor F p 𝜂2𝑝 F p 𝜂2𝑝 F p 𝜂2𝑝

Bias F2,22 = 67.2 4.26 × 10
−10
∗∗∗ .859 F2,22 = 194 1.09 × 10

−14
∗∗∗ .946 F2,22 = 82.3 6.11 × 10

−11
∗∗∗ .882

𝐴 F3,33 = 68.7 2.83 × 10
−14
∗∗∗ .862 F3,33 = 18.3 3.59 × 10

−7
∗∗∗ .625 F3,33 = 102 9.29 × 10

−17
∗∗∗ .903

𝑊 F3,33 = 121 7.12 × 10
−18
∗∗∗ .917 F3,33 = 174 2.61 × 10

−20
∗∗∗ .941 F3,33 = 110 2.83 × 10

−17
∗∗∗ .909

Bias ×𝐴 F6,66 = 17.3 6.33 × 10
−12
∗∗∗ .612 F6,66 = 4.07 1.56 × 10

−3
∗∗ .270 F6,66 = 10.7 2.85 × 10

−8
∗∗∗ .493

Bias ×𝑊 F6,66 = 41.0 2.07 × 10
−20
∗∗∗ .788 F6,66 = 72.1 4.77 × 10

−27
∗∗∗ .868 F6,66 = 47.3 5.02 × 10

−22
∗∗∗ .811

𝐴 ×𝑊 F9,99 = 16.6 2.43 × 10
−16
∗∗∗ .602 F9,99 = 3.77 4.12 × 10

−4
∗∗∗ .255 F9,99 = 8.70 1.59 × 10

−9
∗∗∗ .442

Bias ×𝐴 ×𝑊 F18,198 = 4.05 3.79 × 10
−7
∗∗∗ .269 F18,198 = 1.52 8.48 × 10

−2 .122 F18,198 = 2.88 1.61 × 10
−4
∗∗∗ .207

𝑬𝑹

*** at all pairs

2.57%
8.72%

20.73%

0%

10%

20%

30%

40%

50%

60%

Accurate Neutral Fast

(a) Linear

𝑬𝑹
*** at all pairs

3.75%

16.46%

44.17%
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30%

40%

50%

60%

Accurate Neutral Fast

(b) Circular

𝑬𝑹

*** at all pairs

3.54%

18.44%

47.34%
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60%

Accurate Neutral Fast

(c) Sine-wave

Figure 3: The error rate (ER) for the three tasks. Throughout this paper, the error bars in the graphs indicate 95% CIs. Accuracy

of participants varied with their given speed-accuracy biases.

Table 2: The ANOVA results for MT

Linear Circular Sine-wave

Factor F p 𝜂2𝑝 F p 𝜂2𝑝 F p 𝜂2𝑝

Bias F2,22 = 55.4 2.59 × 10
−9
∗∗∗ .834 F2,22 = 101 8.27 × 10

−12
∗∗∗ .902 F2,22 = 46.7 1.22 × 10

−8
∗∗∗ .809

𝐴 F3,33 = 212 1.29 × 10
−21
∗∗∗ .951 F3,33 = 276 1.99 × 10

−23
∗∗∗ .962 F3,33 = 323 1.64 × 10

−24
∗∗∗ .967

𝑊 F3,33 = 178 1.95 × 10
−20
∗∗∗ .942 F3,33 = 367 2.11 × 10

−25
∗∗∗ .971 F3,33 = 175 2.46 × 10

−20
∗∗∗ .941

Bias ×𝐴 F6,66 = 51.0 6.60 × 10
−23
∗∗∗ .823 F6,66 = 74.8 1.69 × 10

−27
∗∗∗ .872 F6,66 = 41.8 1.27 × 10

−20
∗∗∗ .792

Bias ×𝑊 F6,66 = 50.3 9.88 × 10
−23
∗∗∗ .820 F6,66 = 90.2 7.36 × 10

−30
∗∗∗ .891 F6,66 = 41.2 1.81 × 10

−20
∗∗∗ .789

𝐴 ×𝑊 F9,99 = 126 3.34 × 10
−50
∗∗∗ .920 F9,99 = 165 1.88 × 10

−55
∗∗∗ .937 F9,99 = 128 1.60 × 10

−50
∗∗∗ .921

Bias ×𝐴 ×𝑊 F18,198 = 36.4 6.37 × 10
−53
∗∗∗ .768 F18,198 = 36.7 3.61 × 10

−53
∗∗∗ .769 F18,198 = 31.1 5.81 × 10

−48
∗∗∗ .739

(a) Linear (b) Circular (c) Sine-wave

Figure 4: The movement time (MT ) for the three tasks. The speed of participants varied with their given speed-accuracy biases.
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Table 3: The ANOVA results for 𝜎

Linear Circular Sine-wave

Factor F p 𝜂2𝑝 F p 𝜂2𝑝 F p 𝜂2𝑝

Bias F2,22 = 28.2 8.53 × 10
−7
∗∗∗ .719 F2,22 = 91.1 2.27 × 10

−11
∗∗∗ .892 F2,22 = 70.0 2.91 × 10

−10
∗∗∗ .864

𝐴 F3,33 = 326 1.37 × 10
−24
∗∗∗ .967 F3,33 = 18.4 3.36 × 10

−7
∗∗∗ .626 F3,33 = 32.4 6.05 × 10

−10
∗∗∗ .746

𝑊 F3,33 = 150 2.77 × 10
−19
∗∗∗ .932 F3,33 = 180 1.65 × 10

−20
∗∗∗ .942 F3,33 = 273 2.32 × 10

−23
∗∗∗ .961

Bias ×𝐴 F6,66 = 21.3 9.84 × 10
−14
∗∗∗ .659 F6,66 = 6.27 3.00 × 10

−5
∗∗∗ .363 F6,66 = 1.92 9.05 × 10

−2 .149

Bias ×𝑊 F6,66 = 1.96 8.35 × 10
−2 .151 F6,66 = 5.11 2.33 × 10

−4
∗∗∗ .317 F6,66 = 4.76 4.35 × 10

−4
∗∗∗ .302

𝐴 ×𝑊 F9,99 = 56.7 4.16 × 10
−35
∗∗∗ .837 F9,99 = 4.60 4.37 × 10

−5
∗∗∗ .295 F9,99 = 1.06 4.01 × 10

−1 .0877

Bias ×𝐴 ×𝑊 F18,198 = 1.04 4.18 × 10
−1 .0863 F18,198 = .888 5.94 × 10

−1 .0747 F18,198 = .333 9.96 × 10
−1 .0294

Table 4: The ANOVA results for the index of utilization (Iu) of𝑊

Linear Circular Sine-wave

Factor F p 𝜂2𝑝 F p 𝜂2𝑝 F p 𝜂2𝑝

Bias F2,22 = 26.4 1.43 × 10
−6
∗∗∗ .706 F2,22 = 108 4.30 × 10

−12
∗∗∗ .907 F2,22 = 85.9 4.01 × 10

−11
∗∗∗ .887

𝐴 F3,33 = 270 2.72 × 10
−23
∗∗∗ .961 F3,33 = 19.3 2.08 × 10

−7
∗∗∗ .637 F3,33 = 69.3 2.47 × 10

−14
∗∗∗ .863

𝑊 F3,33 = 610 5.79 × 10
−29
∗∗∗ .982 F3,33 = 242 1.53 × 10

−22
∗∗∗ .957 F3,33 = 64 7.42 × 10

−14
∗∗∗ .854

Bias ×𝐴 F6,66 = 8.79 4.82 × 10
−7
∗∗∗ .444 F6,66 = 3.92 2.07 × 10

−3
∗∗ .263 F6,66 = .403 8.74 × 10

−1 .0354

Bias ×𝑊 F6,66 = 7.36 4.74 × 10
−6
∗∗∗ .401 F6,66 = 24.3 5.44 × 10

−15
∗∗∗ .689 F6,66 = 26.8 6.31 × 10

−16
∗∗∗ .709

𝐴 ×𝑊 F9,99 = 21.0 2.11 × 10
−19
∗∗∗ .657 F9,99 = 2.49 1.30 × 10

−2
∗ .185 F9,99 = 2.72 7.06 × 10

−3
∗∗ .198

Bias ×𝐴 ×𝑊 F18,198 = 1.30 1.91 × 10
−1 .106 F18,198 = .847 6.43 × 10

−1 .0715 F18,198 = .537 9.38 × 10
−1 .0465
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)
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*** at all pairs *** at all pairs
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Figure 5: Iu of𝑊 between Bias for the three tasks. The Iu consistently tended to be larger when the Bias emphasizes speed more

and the differences were statistically significant. These indicating that the wider width were used when Bias emphasize speed.
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Figure 6: IDn vs Iu of𝑊 for the three tasks. The Iu differences between Biases became larger when speed was emphasized. The

Iu values were mostly negative, suggesting that the task width was not fully used in the steering tasks.
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Table 5: The ANOVA results for Ae

Linear Circular Sine-wave

Factor F p 𝜂2𝑝 F p 𝜂2𝑝 F p 𝜂2𝑝

Bias F2,22 = 74.0 1.70 × 10
−10
∗∗∗ .871 F2,22 = 7.46 3.37 × 10

−3
∗∗ .404 F2,22 = 12.2 2.77 × 10

−4
∗∗∗ .525

𝐴 F3,33 = 5.53 × 10
6

3.97 × 10
−94
∗∗∗ 1.00 F3,33 = 2.33 × 10

4
6.09 × 10

−55
∗∗∗ 1.00 F3,33 = 2.14 × 10

5
7.75 × 10

−71
∗∗∗ 1.00

𝑊 F3,33 = 112 2.34 × 10
−17
∗∗∗ .910 F3,33 = 92.3 3.99 × 10

−16
∗∗∗ .893 F3,33 = 103 7.72 × 10

−17
∗∗∗ .904

Bias ×𝐴 F6,66 = .391 8.82 × 10
−1 .0343 F6,66 = 7.47 3.96 × 10

−6
∗∗∗ .404 F6,66 = 13.1 1.12 × 10

−9
∗∗∗ .543

Bias ×𝑊 F6,66 = 6.11 3.97 × 10
−5
∗∗∗ .357 F6,66 = 7.54 3.54 × 10

−6
∗∗∗ .407 F6,66 = 2.44 3.42 × 10

−2
∗ .182

𝐴 ×𝑊 F9,99 = 1.58 1.30 × 10
−1 .126 F9,99 = 2.25 2.48 × 10

−2
∗ .170 F9,99 = 61.9 1.07 × 10

−36
∗∗∗ .849

Bias ×𝐴 ×𝑊 F18,198 = 1.84 2.34 × 10
−2
∗ .143 F18,198 = 2.31 2.71 × 10

−3
∗∗ .173 F18,198 = 1.68 4.54 × 10

−2
∗ .132

Table 6: The ANOVA results for the index of utilization (Iu) of 𝐴

Linear Circular Sine-wave

Factor F p 𝜂2𝑝 F p 𝜂2𝑝 F p 𝜂2𝑝

Bias F2,22 = 79.9 8.19 × 10
−11
∗∗∗ .879 F2,22 = 10.3 6.91 × 10

−4
∗∗ .484 F2,22 = 11.0 4.93 × 10

−4
∗∗∗ .500

𝐴 F3,33 = 206 1.89 × 10
−21
∗∗∗ .949 F3,33 = 6.42 1.51 × 10

−3
∗∗ .369 F3,33 = 22.9 3.39 × 10

−8
∗∗∗ .675

𝑊 F3,33 = 116 1.31 × 10
−17
∗∗∗ .913 F3,33 = 68.8 2.76 × 10

−14
∗∗∗ .862 F3,33 = 103 8.41 × 10

−17
∗∗∗ .903

Bias ×𝐴 F6,66 = 38.8 8.58 × 10
−20
∗∗∗ .779 F6,66 = 10.9 2.25 × 10

−8
∗∗∗ .497 F6,66 = 1.64 1.50 × 10

−1 .130

Bias ×𝑊 F6,66 = 5.09 2.42 × 10
−4
∗∗∗ .316 F6,66 = 7.26 5.64 × 10

−6
∗∗∗ .397 F6,66 = 2.20 5.35 × 10

−2 .167

𝐴 ×𝑊 F9,99 = 43.9 1.07 × 10
−30
∗∗∗ .800 F9,99 = 18.3 1.46 × 10

−17
∗∗∗ .625 F9,99 = 1.68 1.05 × 10

−1 .132

Bias ×𝐴 ×𝑊 F18,198 = 1.91 1.70 × 10
−2
∗ .148 F18,198 = 3.73 1.95 × 10

−6
∗∗∗ .253 F18,198 = .899 5.80 × 10

−1 .0756

*** at all pairs𝑰 𝒖
=
𝒍𝒐
𝒈
𝟐(
𝑨 𝒆
/𝑨
)
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Figure 7: Iu of𝐴 betweenBias for the three tasks. For Linear andCircular, the Iu tended to be larger when theBias emphasized

speed more. For Sine-wave, the Iu tended to be smaller when Bias emphasized speed more.
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Figure 8: IDn vs Iu of 𝐴 for the three tasks. For Linear, the Iu increased as IDn decreased. For Circular and Sine-wave, the Iu
decreased as IDn decreased. Especially in Circular, Ae can describe the shortening of the trajectory length due to the wider𝑊 .
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Similar to the Iu for𝑊 , we also analyzed the index of utilization

(Iu) for 𝐴. We calculated the Iu for 𝐴 as follows:

Iu = log
2

(
Ae
𝐴

)
. (12)

The corresponding ANOVA results are presented in Table 6. Sig-

nificant main effects were found for all independent variables and

significant interaction were found for all combination in Linear

and Circular.

The trend of Iu between Bias depended on the task shape (Fig-

ure 7). For Linear and Circular, the Iu tended to be larger when

participants emphasize speed more, meanwhile the Iu tended to be

smaller for Sine-wave. These trends were statistically significant at

all combinations for Linear, but not significant between Neutral

and Fast for Circular and Sine-wave. In addition, for Linear, Ae
increased as IDn decreased, and for Circular and Sine-wave, Ae
decreased as IDn decreased (Figure 8). These results suggest that for

Sine-wave, when participants emphasize speed more, participants

made strokes that shorten the distance, while this did not apply for

Linear and Circular.

For Linear, since𝐴 is theminimumdistance to complete the task,

it is likely that the faster the stylus was moved, which increased the

positional variability, this increasedAe . The increase inAe wasmore

pronounced for smaller IDn or faster Bias, which suggest that the

positional variability of stylus increases with faster manipulation.

For Circular, although participants can shorten the distance by

stroking near the inner diameter of the path, the path minimization

strategy did not seem to have been adopted when Bias emphasized

speed more (Figure 7-(middle)). Rather, participants focused on

moving the stylus faster, which seemed to lengthen the strokes (i.e.,

increase the positional variability of the stylus). However, in the

widest-𝑊 condition, Iu was notably reduced (Figure 8-(middle)).

These results suggest that in the wide-𝑊 conditions, users tried

to reduce the movement time by stroking the inner diameter of

the path, but this may not have affected results due to the Bias.

Therefore, while Ae for Circular can account for the effects of

short length trajectories in wide-𝑊 conditions, it likely cannot

account for the effects of strategic trajectory changes due to the

Bias.

For Sine-wave, the more the Bias emphasized speed, the smaller

the Iu and the shorter the trajectories (Figure 7-(right)). In addition,

the wider the𝑊 and the longer the 𝐴, the smaller the Iu (Figure 8-

(right)). These results suggest that for Sine-wave, the participants

completed the task quickly by strategically shortening the trajec-

tory.

5.5 Model Fitting

We analyzed the model fit by running linear regressions for MT
against ID with two approaches. One analyzes the data for the three

Bias conditions separately (Accurate, Neutral, and Fast); here

each Bias has 4𝐴 × 4𝑊 = 16 fitting points for regression. The other

analyzes all 3Bias × 4𝐴 × 4𝑊 = 48 fitting points in a mixed manner

(Mixed). The regression analysis with ID was performed via IBM

SPSS Statistics 29. Three models were analyzed: an IDn model

using𝑊 and 𝐴, an IDwe model using We and 𝐴, and an IDe model

using We and Ae . Since the number of free parameters is two for

all models, we used non-adjusted 𝑅2 values. In addition, to analyze

the fits in a comparative manner, we used the AIC measure [4]. The

lower the AIC, the better the fit, and a difference of 2 or more is

considered to be significant [6].

For Linear, the IDn model showed the highest 𝑅2 and lowest

AIC for each Bias, while the IDwe and IDe models showed higher

𝑅2 and lower AIC forMixed, with significant differences (Table 7

and Figure 9). Looking at the difference between the IDwe and IDe
models, the IDwe model consistently showed a higher𝑅2 and smaller

AIC for all Biases andMixed, but the AIC differences were smaller

than 2, which indicates that these are not significant.

For Circular, the IDn model for Accurate and Neutral, the

IDe model for Fast, and the IDwe and IDe for Mixed showed the

highest (or higher) 𝑅2 and lowest (or lower) AIC, with significant

differences (Table 7 and Figure 10). Comparing the IDwe and IDe
models, for each Bias, the IDe model consistently showed a higher

𝑅2 and lower AIC, with significant differences for Neutral and

Fast, but not for Accurate. For Mixed, the IDwe model showed a

higher 𝑅2 and smaller AIC, but the difference was not significant.
For Sine-wave, the IDn model for Accurate and Neutral, the

IDwe model for Fast, and the IDwe and IDe forMixed showed the

highest (or higher) 𝑅2 and lowest (or lower) AIC, with significant

differences (Table 7 and Figure 11). Comparing the IDwe and IDe
models, for each Bias, the IDwe model showed a higher𝑅2 and lower

AIC for Neutral and Fast, with significant differences, and lower

𝑅2 and higher AIC for Accurate, with no significant difference.

ForMixed, the IDe model showed a higher 𝑅2 and smaller AIC, but
this difference was not statistically significant.

To our knowledge, there are no studies that have verified the

steering law can be applied directly to the sine-wave path shape.

However, the steering law held well with 𝑅2 = .992 (Neutral)

(Table 7 and Figure 11). Furthermore, the use of effective parameters

worked well to fit the data, and showed a high Bias smoothing effect

with an 𝑅2 = .972 forMixed, which is substantially higher than for

Linear (.890) or Circular (.943).

Consistently across all path shapes, the We improved the model

fit to Mixed, but reduced the model fit to each individual Bias (ex-

cept Sine-wave Neutral and Fast). These results largely match

the results of previous studies on pointing and crossing [18, 44, 47],

but extend these insights to steering. Similar to previous work, We
seems to smooth out the speed-accuracy bias, at the expense of

less robust movement time prediction accuracy for each individ-

ual speed-accuracy bias, even for steering. The improved model

fit for Sine-wave Fast is similar to previous studies for steering,

suggesting that We for steering might be even more robust than

for pointing or crossing [19, 47]

On the other hand, the use of Ae did not improve the model fit

for Mixed. Thus, Ae for steering had no effect on smoothing the

speed-accuracy bias. Only for Circular did Ae improve the model

fit to each individual Bias. In Circular, participant did not need

to comply with the 𝐴 constraint, and instead performed a small

circular stroke close to the inner diameter of the overall path. Thus,

the model fit of the IDn model decreased, and Ae improved the

model fit to each Bias.

In summary, the IDn model is generally (except for Circular

Fast and Sine-wave Fast) recommended for predicting the move-

ment time of data with individual speed-accuracy biases in steering

tasks. For data with multiple speed-accuracy biases, the IDwe model
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Table 7: The results of model fitting. Blue cells and † indicate the best model with significant differences in terms of AIC.

Linear Circular Sine-wave

Model Bias 𝑎 𝑏 𝑅2 AIC 𝑎 𝑏 𝑅2 AIC 𝑎 𝑏 𝑅2 AIC
IDn model Accurate −110 62.3 .998 169.8† −178 129 .999 168.0† −312 167 .998 214.2†

Neutral 33.3 29.7 .993 162.3† 17.7 76.6 .996 185.6† 91.8 103 .992 218.7†
Fast 96.3 11.3 .953 163.4† 255 24.0 .945 190.0 452 39.6 .866 235.7

Mixed 6.59 34.5 .501 732.7 31.5 76.5 .547 800.3 77.4 103 .637 853.7

IDwe model Accurate −1562 49.3 .958 215.4 −1104 81.7 .955 239.5 −1075 95.5 .984 245.2

Neutral −909 32.5 .939 197.7 −659 66.9 .965 219.1 −544 82.7 .991 220.5†
Fast −441 18.6 .705 192.6 −187 39.4 .932 193.2 −171 58.8 .975 208.9†
Mixed −1449 44.7 .890 659.9† −983 76.4 .943 700.7† −925 90.2 .972 731.1†

IDe model Accurate −1597 49.6 .957 215.7 −885 78.6 .958 238.6 −993 94.4 .985 244.5

Neutral −942 32.8 .936 198.3 −577 65.6 .970 216.5 −349 58.9 .990 223.3

Fast −454 18.6 .679 194.0 −149 38.4 .963 183.6† −142 58.9 .968 212.6

Mixed −1497 45.1 .888 660.9† −880 74.8 .943 701.2† −854 89.5 .972 729.9†

𝑰𝑫𝒏 = 𝑨/𝑾

𝑴
𝑻(
𝒎
𝒔)

𝑰𝑫𝒘𝒆 = 𝑨/𝑾𝒆 𝑰𝑫𝒆 = 𝑨𝒆/𝑾𝒆
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Mixed
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Neutral
Fast
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Neutral
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Figure 9: ID vs MT for Linear. The use of We smoothed the effect of speed-accuracy biases, at the expense of a lower model fit

for each individual Bias. Ae had no effect on smoothing the speed-accuracy biases, nor on improving model fit at each Bias.

𝑴
𝑻(
𝒎
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𝑰𝑫𝒏 = 𝑨/𝑾 𝑰𝑫𝒘𝒆 = 𝑨/𝑾𝒆 𝑰𝑫𝒆 = 𝑨𝒆/𝑾𝒆
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Figure 10: ID vs MT for Circular.We smoothed the effect of speed-accuracy biases at the expense of higher model fit in each

Bias. Ae improved the model fit at each Bias, but did not smooth the speed-accuracy biases.

𝑰𝑫𝒏 = 𝑨/𝑾

𝑴
𝑻(
𝒎
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Figure 11: ID vs MT for Sine-wave. We smoothed the effect of speed-accuracy biases and improved the model fit only for Fast.

Ae had little effect on smoothing the speed-accuracy biases and on improving the model fit for each Bias.
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or IDe model is recommended for predicting movement time, as

this approach smooths the effects of the speed-accuracy biases.

Effective amplitude improved the model fit for each individual

speed-accuracy bias only for Circular steering.

5.6 Throughput

We analyzed three formulations of TP : TPn calculated by IDn, TPwe
calculated via IDwe , and TPe calculated by IDe . The corresponding

ANOVA results are presented in Table 8. In addition to the ANOVA,

we analyzed the stability of TPs across speed-accuracy biases and

task difficulties.

5.6.1 Stability across Speed-accuracy Biases. To investigate
the stability across speed-accuracy biases, we tested with two meth-

ods; one used in previous studies [18, 27], and the other through a

permutation test. For the first approach, we calculated the averaged

TP for each Bias, and then analyzed the percentage of the difference

between the maximum and minimum TP to the maximum TP , i.e.,
100%× (TPmax −TPmin)/TPmax. The smaller this value, the smaller

the difference in TP between Biases, indicating a smoothing of the

effects of speed-accuracy biases. In previous work, this measure

was observed to be 42% for pointing [27], 44.74% for crossing with
a directional constraint and 20.69% for crossing with an amplitude
constraint [18]. In our study, for Linear the differences between the

maximum and minimum TPs of each Bias relative to the maximum

TPs were 68.6% for TPn, 53.3% for TPwe , and 53.8% for TPe (Fig-
ure 12). For Circular, the percentages were 65.7% for TPn, 34.6%
for TPwe , and 37.0% for TPe (Figure 13), and for Sine-wave, 60.4%

for TPn, 24.9% for TPwe , and 24.3% for TPe (Figure 14). These results
showed that We smooths the effects of Bias for all task shapes.

They also showed that TPwe and TPe for Sine-wave are more stable

metrics in terms of stability across speed-accuracy biases.

For the second approach, we performed a permutation test,

shown in Table 9. To perform this test, we first calculated TPn,
TPwe , and TPe for each participant, each Bias, and each task (i.e.,

3𝑇𝑎𝑠𝑘𝑠×3Bias𝑒𝑠×3TP𝑠×12𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 = 324TPs). Then, for each
task and TP , we extracted two Biases (e.g.,Accurate andNeutral
for TPn in Experiment 1) and performed the permutation test. Ac-

cording to the outcome, only for TPwe and TPe in Sine-wave, the

difference between Accurate and Neutral were not significantly

different, same as pairwise test results (Figures 12–14). These re-

sults still suggest that TPwe and TPe for Sine-wave are more stable

metrics in terms of stability across speed-accuracy biases.

5.6.2 Stability across Task Difficulties. To verify the stability

across task difficulties, we calculated the coefficient of variation

(𝐶𝑉 ) for each individualBias. The𝐶𝑉 was calculated by dividing the

standard deviation (𝑆𝐷) by the mean. The smaller this value is, the

smaller the fluctuation of TP , indicating that TP is stable across task

difficulty. In a previous study in pointing, this measure was 13.2%

for Neutral (no multiple bias condition was given to participants in

said study) [23]. For almost all conditions (except Circular Fast

and Sine-wave Fast), TPn showed the highest stability across task

difficulties, andWe reduced the stability (Figures 15, 16, and 17, and

Table 10). For Circular Fast, and Sine-wave Fast,We increased

the stability. For Linear and Sine-wave, Ae slightly reduced or had

little effect on the stability. On the other hand, only for Circular,

Ae increased the stability.

For Linear and Circular, TPn increased as the IDn increased

(Figures 15 and 16). For Sine-wave, TPn increased as𝑊 decreased,

and 𝐴 did not have a large impact on TPn (Figure 17). On the other

hand, TPwe and TPe decreased consistently across all task shapes as
the IDn increased (Figures 15, 16, and 17). For Circular, in largest

𝑊 conditions, Ae decreased the TP and increased the TP stability

across IDns.

5.6.3 The Effect of Effective Parameters on TP Stability. We
increased the stability of TP across different Biases, but gener-

ally (except for Circular Fast and Sine-wave Fast) reduced the

stability across IDns. The improved stability of TP across IDns in

Circular Fast and Sine-wave Fast is most likely due to the higher

ERs. The ER in Linear was 20.73% for Fast, while it exceeded 40%

in Circular and Sine-wave. This indicates that participants did

not or were unable to comply with the𝑊 constraint. As a result, the

movement time was unjustifiably small for the small𝑊 conditions,

and TPn became unstable.

While Ae did not smooth the TP across different Biases, it im-

proved the stability of TP between IDns only in the Circular. This

is likely due to the same cause as the effect of Ae on model fitting.

In summary, in input device comparison experiments with steer-

ing tasks, if participants exhibit different subjective speed-accuracy

biases and one needs to compare device performance by smooth-

ing the effect of different biases, we recommend to use TPwe or
TPe . This is because, TPwe and TPe are more stable metrics across

different Biases than TPn for all task shapes (Figures 12, 13, and

14), and can smooth the effects of participants’ implicit subjective

speed-accuracy bias. If researchers aim to investigate the perfor-

mance only for different task difficulties, in an experiment with a

single device and a specific speed-accuracy bias performed by a

group of participants, we recommend using TPn due to its stabil-

ity across task difficulties. Only for Circular, effective amplitude

should be used to improved the stability of throughput between

task difficulties for each individual speed-accuracy bias.

5.7 Stylus Speed and Stylus Positional

Variability

To investigate the reason of unstable TPwe and TPe across IDn, we an-

alyzed the stylus speed and positional variability (Figures 18, 19, and

20). A previous study on crossing tasks had identified that possible

causes of TP instability are: an unstable cursor speed across trials,

a small endpoint distribution despite high cursor speed, and/or no

cursor deceleration [18]. Since steering is a series of crossings [1],

a similar analysis might be sensible.

For Linear, the stylus speed was very high in low IDn conditions,

and unstable across trials (Figure 18). Meanwhile, positional vari-

ability was very small and stable across trials. These results showed

that users were able to complete the low-IDn Linear task with a

high speed movement without high positional variability, which

may be the reason for the unstable TPwe and TPe across IDns, which

matches the observations from a previous study on crossing [18].

For Circular, the stylus speed was not very high, lower than in

Linear, and stable across trials even in low IDn condition (Figure 19).

In addition, the positional variability was much bigger than in
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Table 8: The ANOVA results for TP

Linear Circular Sine-wave

TP Factor F p 𝜂2𝑝 F p 𝜂2𝑝 F p 𝜂2𝑝

TPn Bias F2,22 = 87.8 3.26 × 10
−11
∗∗∗ .889 F2,22 = 107 4.48 × 10

−12
∗∗∗ .907 F2,22 = 90.0 2.55 × 10

−11
∗∗∗ .891

𝐴 F3,33 = .473 7.03 × 10
−1 .0412 F3,33 = 15.8 1.56 × 10

−6
∗∗∗ .589 F3,33 = 30.3 1.32 × 10

−9
∗∗∗ .734

𝑊 F3,33 = 35.1 2.19 × 10
−10
∗∗∗ .762 F3,33 = 33.6 3.87 × 10

−10
∗∗∗ .753 F3,33 = 55.0 6.29 × 10

−13
∗∗∗ .833

Bias ×𝐴 F6,66 = 1.01 4.27 × 10
−1 .0841 F6,66 = 26.0 1.23 × 10

−15
∗∗∗ .703 F6,66 = 6.46 2.15 × 10

−5
∗∗∗ .370

Bias ×𝑊 F6,66 = 45.4 1.48 × 10
−21
∗∗∗ .805 F6,66 = 62.2 2.93 × 10

−25
∗∗∗ .850 F6,66 = 50.9 6.91 × 10

−23
∗∗∗ .822

𝐴 ×𝑊 F9,99 = 2.97 3.59 × 10
−3
∗∗ .213 F9,99 = 4.48 6.08 × 10

−5
∗∗∗ .289 F9,99 = 14.8 6.05 × 10

−15
∗∗∗ .574

Bias ×𝐴 ×𝑊 F18,198 = 1.16 3.00 × 10
−1 .0953 F18,198 = 6.44 2.01 × 10

−12
∗∗∗ .369 F18,198 = 1.46 1.07 × 10

−1 .117

TPwe Bias F2,22 = 88.2 3.10 × 10
−11
∗∗∗ .889 F2,22 = 69.7 3.03 × 10

−10
∗∗∗ .864 F2,22 = 33.3 2.21 × 10

−7
∗∗∗ .752

𝐴 F3,33 = 92.4 3.91 × 10
−16
∗∗∗ .894 F3,33 = 4.56 8.88 × 10

−3
∗∗ .293 F3,33 = 89.7 6.05 × 10

−16
∗∗∗ .891

𝑊 F3,33 = 53.8 8.43 × 10
−13
∗∗∗ .830 F3,33 = 129 2.71 × 10

−18
∗∗∗ .921 F3,33 = 15.0 2.46 × 10

−6
∗∗∗ .577

Bias ×𝐴 F6,66 = 16.1 2.59 × 10
−11
∗∗∗ .594 F6,66 = 4.12 1.42 × 10

−3
∗∗ .273 F6,66 = 5.24 1.84 × 10

−4
∗∗∗ .323

Bias ×𝑊 F6,66 = 1.34 2.54 × 10
−1 .108 F6,66 = 3.48 4.78 × 10

−3
∗∗ .240 F6,66 = 17.2 7.58 × 10

−12
∗∗∗ .610

𝐴 ×𝑊 F9,99 = 24.6 1.32 × 10
−21
∗∗∗ .691 F9,99 = 2.50 1.26 × 10

−2
∗ .185 F9,99 = 9.18 5.33 × 10

−10
∗∗∗ .455

Bias ×𝐴 ×𝑊 F18,198 = 1.50 9.37 × 10
−2 .120 F18,198 = 2.37 2.00 × 10

−3
∗∗ .177 F18,198 = .751 7.54 × 10

−1 .0639

TPe Bias F2,22 = 88.8 2.90 × 10
−11
∗∗∗ .890 F2,22 = 76.3 1.27 × 10

−10
∗∗∗ .874 F2,22 = 30.9 4.07 × 10

−7
∗∗∗ .738

𝐴 F3,33 = 92.2 4.01 × 10
−16
∗∗∗ .893 F3,33 = 2.47 7.91 × 10

−2 .183 F3,33 = 89.4 6.38 × 10
−16
∗∗∗ .890

𝑊 F3,33 = 52.8 1.10 × 10
−12
∗∗∗ .827 F3,33 = 115 1.48 × 10

−17
∗∗∗ .913 F3,33 = 8.99 1.71 × 10

−4
∗∗∗ .450

Bias ×𝐴 F6,66 = 17.0 8.80 × 10
−12
∗∗∗ .608 F6,66 = 2.68 2.19 × 10

−2
∗ .196 F6,66 = 4.99 2.89 × 10

−4
∗∗∗ .312

Bias ×𝑊 F6,66 = 1.21 3.14 × 10
−1 .0989 F6,66 = 7.79 2.36 × 10

−6
∗∗∗ .415 F6,66 = 16.6 1.36 × 10

−11
∗∗∗ .602

𝐴 ×𝑊 F9,99 = 25.1 6.84 × 10
−22
∗∗∗ .695 F9,99 = 1.77 8.26 × 10

−2 .139 F9,99 = 7.76 1.43 × 10
−8
∗∗∗ .414

Bias ×𝐴 ×𝑊 F18,198 = 1.47 1.05 × 10
−1 .118 F18,198 = 1.63 5.59 × 10

−2 .129 F18,198 = .725 7.83 × 10
−1 .0618
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Figure 12: Bias vs TP for Linear. Throughout Figures 12–14, the percentages in the graphs represent the ratios when the highest

TP among the three Bias conditions is 100%. The stability of TP across Bias was improved byWe , but Ae had little effect on it.
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Figure 13: Bias vs TP for Circular. The stability of TP across Bias was improved byWe , but Ae had little effect on it.
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Table 9: The p-values for the permutation test. Green cells and ‡ indicate 𝑝 ≧ .05.

Linear Circular Sine-wave

Compared Bias TPn TPwe TPe TPn TPwe TPe TPn TPwe TPe
Accurate Neutral 5.3 × 10

−4
1.0 × 10

−3
9.2 × 10

−4
4.9 × 10

−4
2.5 × 10

−3
9.5 × 10

−4
9.6 × 10

−4
2.9 × 10

−1
‡ 3.5 × 10

−1
‡

Neutral Fast 5.0 × 10
−4

5.0 × 10
−4

4.7 × 10
−4

4.6 × 10
−4

4.5 × 10
−4

5.3 × 10
−4

4.7 × 10
−4

5.3 × 10
−4

5.0 × 10
−4

Accurate Fast 5.1 × 10
−4

5.1 × 10
−4

4.8 × 10
−4

4.9 × 10
−4

5.1 × 10
−4

5.0 × 10
−4

4.9 × 10
−4

4.9 × 10
−4

5.1 × 10
−4
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Figure 15: IDn vs TP for Linear. The stability of TP across IDn was decreased byWe for all individual Biases, but Ae had little

effect on it.
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Table 10: The stability of TPs across task difficulties. 𝑆𝐷 is the standard deviation, and 𝐶𝑉 the coefficient of variation calculated

by dividing the 𝑆𝐷 by the𝑀𝑒𝑎𝑛.

Linear Circular Sine-wave

TP Bias 𝑆𝐷 𝑀𝑒𝑎𝑛 𝐶𝑉 [%] 𝑆𝐷 𝑀𝑒𝑎𝑛 𝐶𝑉 [%] 𝑆𝐷 𝑀𝑒𝑎𝑛 𝐶𝑉 [%]

TPn Accurate 1.29 19.6 6.59% 0.946 9.32 10.1% 0.537 7.19 7.47%

Neutral 3.31 34.4 9.63% 0.613 13.4 4.56% 1.05 9.84 10.6%

Fast 16.8 62.5 26.8% 7.54 27.1 27.8% 5.75 18.2 31.7%

TPwe Accurate 44.4 71.5 62.1% 8.92 22.8 39.2% 2.80 15.4 18.2%

Neutral 47.9 102 46.9% 8.47 25.6 33.1% 2.69 16.1 16.7%

Fast 58.1 153 37.9% 6.44 34.8 18.5% 3.18 20.2 15.8%

TPe Accurate 45.6 72.4 63.0% 6.22 21.2 29.4% 2.62 15.2 17.3%

Neutral 49.9 104 48.0% 6.88 24.5 28.1% 2.58 15.8 16.3%

Fast 61.3 157 39.1% 4.11 33.6 12.2% 3.23 19.8 16.4%
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Figure 18: Stylus speed and positional variability against the percentage of task progress for Linear. The blue line indicates the

averaged stylus speed and positional variability. For the low IDn condition, the variability was small despite the high speed,

which resulted in too large TPs.
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Figure 19: Stylus speed and positional variability against the percentage of task progress for Circular. The blue line indicates

the averaged stylus speed and positional variability. The speed was not too fast, and variability increased as𝑊 increased. The

increase of variability in certain parts of the task is likely due to the occlusion problem in Circular tasks.
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Figure 20: Stylus speed and positional variability against the percentage of task progress for Sine-wave. The blue line indicates

the averaged stylus speed and positional variability. The speed was stable, and variability increased as𝑊 increased. The

variability changes during task were also more stable than for Circular.
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Linear. These are possible reasons for the observed stable TP ,
compared to Linear. However, positional variability was higher

and unstable (Figure 19). More specifically, this variation in the

variability occurred even within a single stroke, and the timing

at which the variability increased was similar in each trial. This

may be due to the occlusion problem in Circular steering. The tip

of the stylus is sometimes hidden by the hand during this type of

task, depending on the circle diameter, and this may have reduced

the stability of the TP across IDn. The ergonomics factor may also

have affected this result; the ease of moving the stylus would vary

depending on its position within the circle.

For Sine-wave, the stylus speed was not very high, even in the

low IDn condition, and reasonably stable across trials (Figure 20).

Stylus speed was more stable than for Linear, and positional vari-

ability was more stable relative to Circular. Positional variability

was widely spread in low IDn conditions, but smaller in high IDn
conditions. Similar to the TP of crossing with amplitude constraint
task in a previous study [18], the stylus speed was stable and the

positional variability was widely spread, even for easy tasks. These

reasons are possible causes of the stable TP for Sine-wave.

Although direct comparisons between task shapes cannot be

made due to different path lengths, Sine-wave had the highest

model fit for Mixed (Table 7), and exhibited stable TP across differ-

ent Biases and IDns (Table 10). For Linear, the positional variability

was small even when the stylus speed was very high (Figure 18).

Therefore, in low IDn conditions, the task could be completed suc-

cessfully with a high speed movement, suggesting that TP was less

stable across task difficulties (Figure 15). In Circular, stylus speed

was stable, but in each trial, the positional variability was large in

some parts of the circle, likely due the presence of the occlusion

problem (Figure 19). With sine-wave steering, the stylus speed and

positional variability were stable (Figure 20), and there was no oc-

clusion problem, suggesting stable TP . These results suggest that
we can recommend the sine-wave steering task for device compari-

son experiments with trajectory-based tasks, as the task does not

suffer from high speed movements nor from occlusion issues.

6 IMPLICATIONS

Our work offers the following implications for future researchers

investigating path-steering performance.

• When modeling steering tasks with untested path shapes,

we recommend using the IDn model for estimating MT for

one device, one group of participants, and a specific speed-

accuracy bias.

• In terms of better stability of TP across different speed-

accuracy biases, we recommend using TPwe or TPe when
comparing performances between multiple devices [2], mul-

tiple groups of participants [30], or multiple experimental

conditions [36].

• For steering performance evaluations, we generally recom-

mend the sine-wave shape due to the stability of TP .

7 LIMITATIONS AND FUTUREWORK

The path shape in the real-world steering tasks is not limited to

linear, circular, and sine-wave ones. Therefore, additional validation

with other shapes, such as corners [28], narrowing and widening

tunnels [39], and sequential linear path segments [41], is needed

for generalization. Although it is known that task curvature affects

movement time [40], the effect of curvature was not investigated

in this study. Therefore, additional verification of the effect of cur-

vature is needed. In this study, the amplitude of the sine-wave (not
the path length 𝐴) was fixed, but this amplitude is likely to affect

the movement time. In addition, the effect of the number of waves

was not considered. Therefore, additional research on sine-wave

steering is needed.

8 CONCLUSION

The usefulness of throughput as a performance metric for steer-

ing was demonstrated by three comprehensive tasks, exploring

three path shapes, each with three speed-accuracy biases. We also

experimentally demonstrated the effects of effective width and ef-

fective amplitude measures to better characterize user performance

with various path shapes and multiple speed-accuracy biases. Our

results provide theoretical support for the use of effective param-

eters for steering. When effective width was used, the effect of

speed-accuracy bias on throughput was smaller than when nominal

width was used. When effective amplitude was used, the stability

of throughput across different task difficulties was improved in cir-

cular steering task. Therefore, we suggest that TPwe or TPe may be

better performance metrics than TPn in terms of smoothing across

different speed-accuracy biases. Furthermore, we investigated sine-

wave steering task, with our results suggesting that this shapemight

be most useful for device evaluation experiments. Our results lead

to a better understanding of user performance in trajectory-based

tasks, and the approach presented here provides an evidence-based

performance evaluation method for future researchers.
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