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Rethinking the Dual Gaussian Distribution Model for
Predicting Touch Accuracy in On-screen-start Pointing Tasks
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The dual Gaussian distribution hypothesis has been used to predict the success rate of target pointing on
touchscreens. Bi and Zhai evaluated their success-rate prediction model in off-screen-start pointing tasks.
However, we found that their prediction model could also be used for on-screen-start pointing tasks. We
discuss the reasons why and empirically validate our hypothesis in a series of four experiments with various
target sizes and distances. The prediction accuracy of Bi and Zhai’s model was high in all of the experiments,
with a 10-point absolute (or 14.9% relative) prediction error at worst. Also, we show that there is no clear
benefit to integrating the target distance when predicting the endpoint variability and success rate.
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1 INTRODUCTION
Target acquisition is the most frequently performed operation on touchscreens. Tapping a small
target, however, is sometimes an error-prone task, for reasons such as the “fat finger problem”
[21, 48]. Hence, various techniques have been proposed to improve the precision of touch pointing
[2, 48, 59]. Researchers have also sought to understand the fundamental principles of touch, e.g.,
touch-point distributions [4, 50]. As shown in these studies, the success rate in touch pointing is
low, in particular for selecting a small target.
If touch GUI designers could compute the success rate of tapping a given target, they could

determine target sizes that would strike a balance between usability and screen-space occupation.
For example, suppose that a designer has to arrange many icons on a webpage. In this case, is
a 5-mm diameter for each circular icon sufficiently large for accurate tapping? If not, then how
about a 7-mm diameter? By how much can we expect the accuracy to be improved? Moreover,
while larger icons can be more accurately tapped, they occupy more screen space. In that case, a
webpage can be lengthened so that the larger icons fit, but this requires users to perform more
scrolling operations to view and select icons at the bottom of the page. Another approach would be
to split a page into several pages so that the target sizes remain. However, it is known that many
users do not jump to the second or further pages (cf. the “Avoid the fold” and “Avoid the scroll”
principles in web design [41]). Hence, designers have to carefully manage this tradeoff between
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user performance and screen space, and they sometimes have to arrange targets that are smaller
than common design guidelines (e.g., the Human Factors and Ergonomics Society recommends
using >9.5-mm targets for touchscreens [27]).
Without a success-rate prediction model, designers have to conduct costly user studies to

determine suitable target sizes on a webpage or app, but this strategy has low scalability. Accurate
quantitative models would also be helpful for automatically generating user-friendly UIs [16, 40]
and optimizing UIs [5, 14]. Furthermore, having such models would help researchers justify their
experimental designs in evaluating novel interaction techniques that do not focus mainly on touch
accuracy. For example, researchers could state, “According to the success-rate prediction model,
9-mm-diameter circular icons are assumed to be accurately (> 99%) selected by finger touching,
and thus, this experiment is a fair one for comparing the usability of our proposed system and the
baseline.”

To predict how successfully users will tap a target, Bi and Zhai proposed a model that computes
the success rate solely from the target size (or width𝑊 ) for both 1D and 2D pointing tasks [10].
They reasonably limited their model’s applicability to touch-pointing tasks starting off-screen, i.e.,
when a user’s finger moves from a position outside the touch screen. In this paper, we justify the
use of the model for pointing with an on-screen start. After that, we empirically show, through a
series of experiments, that the model has comparable prediction accuracy even for on-screen-start
pointing. Our key contributions include:
• Theoretical justification for applying Bi and Zhai’s success-rate prediction model to
pointing tasks starting on-screen.We found that the model is valid regardless of whether a
pointing task starts on- or off-screen. This means that designers and researchers can predict
success rates by using a single model.

• Empirical verification of our hypothesis via four experiments. We conducted 1D and 2D
pointing experiments starting on-screen with randomized and controlled target distances (or
amplitudes 𝐴). The results showed that we could predict the success rates with an absolute
prediction error of ∼10 points at worst, which corresponds to a 14.9% relative prediction error.

In short, the novelty of our study is that it extends the applicability of Bi and Zhai’s model to a
variety of tasks, with support from empirical evidence. We thus expand the coverage of the model
to other applications involving on-screen-start pointing, such as (a) tapping a “Like” button after
scrolling through a social networking service feed, (b) successively inputting check marks on a
questionnaire, and (c) typing on a software keyboard. Also, with this model, we can now predict
the success rate for tapping a target with a given set of 𝐴 and𝑊 values in Fitts’ law tasks on small
touchscreens.

2 RELATEDWORK
2.1 Success-Rate Prediction for Pointing Tasks
While a typical goal of pointing models is to predict the movement time𝑀𝑇 , researchers have also
tried to derive models to predict the success rate (or error rate). In particular, the model of Meyer
et al. [37] is often cited as the first one to predict the error rate, but it does not account for the𝑀𝑇 .
In practice, the error rate increases as users move faster [63], and thus, Wobbrock et al. accounted
for this effect in their model [54, 55]. Also, success-rate prediction for moving target selection is
another hot topic in HCI [23, 24, 26, 42].
Simply speaking, when operators prioritize speed, the error rate increases. While Wobbrock et

al. applied a time limit as an objective constraint by using a metronome in their study [54], this
speed-accuracy tradeoff was also valid when the priority was subjectively biased [63]. Besides the
case of rapidly aimed movements, the error rate has also been investigated for tapping on a static
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button within a given temporal window [30–32]. Despite the recent importance of finger-touch
operations on smartphones and tablets, however, the only model for predicting the success rate
while accounting for finger-touch ambiguity is the work by Bi and Zhai on pointing from an
off-screen start [10]. It would be useful if we could extend the validity of their model to other
applications.

2.2 Improvements and Principles of Finger-Touch Accuracy
Examples of improving touch accuracy include using an offset from the finger contact point
[11, 45, 48], dragging in a specific direction to confirm an intended target among many items
[2, 39, 59], visualizing a contact point [53, 60], applying machine learning [51] or probabilistic
modeling [9], and correcting hand tremor effects by using motion sensors [44]. In addition to these
techniques, researchers have sought to understand why finger touch is less accurate compared
with other input modalities such as a mouse cursor. One typical issue is the fat finger problem
[21, 22, 48], in which a user wants to tap a small target, but the finger occludes it. Another issue
is that finger touch has an unavoidable offset (spatial bias) from a user’s intended touch point to
the actual touch position sensed by the system. Even if operators focus on accuracy by taking a
sufficient length of time, the sensed touch point is biased from a small target [21, 22].

2.3 Success-Rate Prediction for Finger-Touch Pointing
2.3.1 Outline of Dual Gaussian Distribution Model. Previous studies have shown that the end-

point distribution of finger touches follows a bivariate Gaussian distribution over a target [4, 19, 50].
Thus, a touch point observed by a system can be considered a random variable 𝑋obs following
a Gaussian distribution, 𝑋obs ∼ 𝑁 (𝜇obs, 𝜎2

obs), where 𝜇obs and 𝜎obs are the center and 𝑆𝐷 of the
distribution, respectively. Bi, Li, and Zhai hypothesized that 𝑋obs is the sum of two independent
random variables consisting of relative and absolute components, both of which follow Gaussian
distributions, 𝑋r ∼ 𝑁 (𝜇r, 𝜎2

r ) and 𝑋a ∼ 𝑁 (𝜇a, 𝜎2
a ) [8].

𝑋r is a relative component affected by the speed-accuracy tradeoff. When a user aims for a target
more quickly, the relative endpoint variability 𝜎r increases. As indicated by Fitts’ law studies, if the
acceptable endpoint tolerance𝑊 increases, then the user’s endpoint noise level 𝜎r also increases
[12, 35].
𝑋a is an absolute component that reflects the precision of an input probe (a finger in this paper)

and is independent of the task precision. Thus, even when a user taps a small target very carefully,
there is still a spatial bias from the intended touch point [8, 21, 22]. The distribution of this bias
is what 𝜎a models. Therefore, although 𝜎r can be reduced by a user aiming slowly at a target, 𝜎a
cannot be controlled by placing such a priority on speed/accuracy. Note that the means of both
components’ random variables (𝜇r and 𝜇a) are assumed to tend to be close to the target center,
𝜇r ≈ 𝜇a ≈ 0, if the coordinate of the target center is defined as 0.
Again, the observed touch point is assumed to be a random variable that is the sum of two

independent components:

𝑋obs = 𝑋r + 𝑋a ∼ 𝑁 (𝜇r + 𝜇a, 𝜎
2
r + 𝜎2

a ) (1)

𝜇obs (= 𝜇r + 𝜇a) is close to 0 on average, and 𝜎2
obs is:

𝜎2
obs = 𝜎2

r + 𝜎2
a (2)

When a user exactly utilizes the target size (𝑊 ),
√
2𝜋𝑒𝜎r matches a given𝑊 (i.e., 4.133𝜎r ≈ 𝑊 )

[9, 35]. Yet, users tend to be biased toward speed or accuracy, thus over- or underusing𝑊 [63]. Bi
and Zhai assumed that using a fine probe of negligible size (𝜎a ≈ 0), such as a mouse cursor, makes
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𝜎r proportional to𝑊 . Thus, by introducing a constant 𝛼 , we have:

𝜎2
r = 𝛼𝑊 2 (3)

Then, replacing 𝜎2
r in Equation 2 with Equation 3, we obtain:

𝜎2
obs = 𝛼𝑊 2 + 𝜎2

a (4)

Hence, by conducting a pointing task with several𝑊 values, we can run a linear regression on
Equation 4 and obtain the constants 𝛼 and 𝜎a. Accordingly, we can compute the endpoint variability
for tapping a target of size𝑊 . We denote this endpoint variability computed from a regression
expression as 𝜎reg:

𝜎reg =

√
𝛼𝑊 2 + 𝜎2

a (5)

2.3.2 Revisiting Bi and Zhai’s Studies on Success-Rate Prediction. Here, we revisit Bi and Zhai’s
first experiment on the Bayesian Touch Criterion [9]. They conducted a 2D pointing task with
circular targets of diameter𝑊 = 2, 4, 6, 8, and 10 mm. In their task, tapping the starting circle
caused the first target to immediately appear at a random position. Subsequently, lifting the input
finger off a target caused the next target to appear immediately. Hence, the participants successively
tapped each new target as quickly and accurately as possible. The target distance was not predefined
as 𝐴, unlike typical experiments involving Fitts’ law. A possible way to analyze the effect of the
movement amplitude would be to calculate 𝐴 as the distance between the current target and the
previous one; however, no such analysis was performed. Thus, even if the endpoint variability 𝜎obs
was influenced by 𝐴, the effect was averaged.

By using Equation 5, the regression expressions of the 𝜎reg values on the 𝑥- and 𝑦-axes were
calculated as:

𝜎regx =
√
0.0075𝑊 2 + 1.6834 and 𝜎regy =

√
0.0108𝑊 2 + 1.3292 (6)

Bi and Zhai then derived their success-rate prediction model [10]. Assuming a negligible correlation
between the observed touch point values on the 𝑥- and 𝑦-axes (i.e., 𝜌 = 0) gives the following
probability density function for the bivariate Gaussian distribution:

𝑃 (𝑥,𝑦) = 1
2𝜋𝜎regx𝜎regy

exp

(
− 𝑥2

2𝜎2
regx

− 𝑦2

2𝜎2
regy

)
(7)

Then, the probability that the observed touch point falls within the target boundary 𝐷 is:

𝑃 (𝐷) =
∬

𝐷

1
2𝜋𝜎regx𝜎regy

exp

(
− 𝑥2

2𝜎2
regx

− 𝑦2

2𝜎2
regy

)
𝑑𝑥𝑑𝑦 (8)

where 𝜎regx and 𝜎regy are calculated from Equation 6. For a 1D horizontal bar target, whose boundary
is defined as ranging from 𝑦1 to 𝑦2, we can simplify the predicted probability for where the touch
point 𝑌 falls on the target:

𝑃 (𝑦1 ≤ 𝑌 ≤ 𝑦2) =
1
2

[
erf

(
𝑦2

𝜎regy
√
2

)
− erf

(
𝑦1

𝜎regy
√
2

)]
(9)

Note that the mean touch point 𝜇 of the probability density function is assumed to be ≈ 0, thus
eliminating it already from this equation. If the target width is𝑊 , then Equation 9 can be simplified
further:

𝑃

(
−𝑊
2

≤ 𝑌 ≤ 𝑊

2

)
= erf

(
𝑊

2
√
2𝜎regy

)
(10)
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3 GENERALIZABILITY OF SUCCESS-RATE PREDICTION MODEL TO ON-SCREEN
STARTING

Here, we discuss why Bi and Zhai’s model (Equations 8 and 10) can be applied to touch-pointing
tasks starting on-screen, as well as possible concerns about this application. In their paper [9], Bi
and Zhai stated, “We generalize the dual Gaussian distribution hypothesis from Fitts’ tasks—which
are special target selection tasks involving both amplitude (𝐴) and target width (𝑊 )—to the more
general target-selection tasks which are predominantly characterized by𝑊 alone.” Therefore, to
omit the effect of 𝐴 when they later evaluated the success-rate prediction model, they told their
participants to keep their dominant hands off the screen in natural positions and start from those
positions in each trial [10], which simulated an off-screen-start pointing task.

The reason why Bi and Zhai limited the scope of their model to off-screen-start conditions was
that they would limit the problem space to finger touching on mobile screens [62]. In most mobile
interactions, users move their hand from off the screen and rest or get out of the eyesight to the
screen path, and thus the off-screen-start condition was more appropriate. One the other hand,
as mentioned by Zhai, the on-screen-start conditions are also common such as keyboard typing,
which is the focus in this paper.

In generalizing the model to pointing tasks starting on-screen, one concern is the effect of 𝐴 on
the success rate. Even if we do not define the target distance 𝐴 from the initial finger position, in
actuality, the finger has an implicit travel distance, because “𝐴 is less well-defined” [9] in off-screen-
start tasks does not mean “there is no movement distance.” Thus, a pointing task predominantly
characterized by𝑊 alone can also be interpreted as averaging the effects of 𝐴 on touch-point
distributions and success rates.
For example, suppose that a participant in off-screen-start tasks repeatedly taps a target 300

times. Let the implicit 𝐴 value be 20 mm for 100 trials, 30 mm for another 100 trials, and 60
mm for the other 100. The success rates are independently calculated as (say) 95, 91, and 75%,
respectively. If we do not distinguish the implicit 𝐴 values, however, then the success rate would be
(95+91+75)/300 = 87%. This value is somewhat close to the 30-mm case (4 points; 4.60% difference
from the prediction)1, but the prediction errors for the other𝐴 values are more remarkable: 8 points
(9.20%) and 12 points (13.8%) for 20 and 60 mm, respectively.

If the implicit or explicit movement distance 𝐴 does not significantly change the success rate,
such as from 88% for 𝐴 = 20 mm to 86% for 𝐴 = 60 mm, then we can use Bi and Zhai’s model
regardless of whether pointing tasks start on- or off-screen. Now, the question is whether the
success rate changes depending on the implicit or explicit 𝐴. According to the current prediction
model (Equations 8 and 10), once𝑊 is given, the predicted success rate is determined by 𝜎reg.
Hence, the debate revolves around whether the touch-point distribution is affected by the distance
𝐴. This is equivalent to asking whether Equation 4 (𝜎2

obs = 𝛼𝑊 2 +𝜎2
a ) is valid regardless of the value

of 𝐴. In fact, the literature offers evidence on both sides of the question, as explained below.
Previous studies reported that the 𝐴 does not strongly influence the endpoint distribution

[8, 25, 63]. For these typical pointing tasks, participants perform closed-loop motions [20]. In
contrast, the endpoint distribution for when participants perform a ballistic motion has been
reported to be affected by 𝐴 [20, 38, 46, 61]. Beggs et al. [6, 7] formulated the relationship in this
way:

𝜎2
obs = 𝛽𝐴2 + 𝛾 (11)

1In this paper, we report both absolute and relative prediction errors. If the observed and predicted success rates are
91 and 87%, respectively, the absolute prediction error is reported to be 4 points, and the relative prediction error is
|91 − 87 |/87 × 100% = 4.60%.
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where 𝜎obs is valid for directions collinear and perpendicular to the movement direction, and 𝛽 and
𝛾 are constants.

The critical threshold of whether participants perform a closed-loop or ballistic motion depends
on Fitts’ original index of difficulty, 𝐼𝐷 = log2 (2𝐴/𝑊 ). When 𝐼𝐷 is less than 3 or 4 bits, a pointing
task can be accomplished with only a ballistic motion [17, 20]. While the critical 𝐼𝐷 changes
depending on the experimental conditions, an extremely easy task with a short 𝐴 or large𝑊
generally does not require precise closed-loop operations. Hence, we theoretically assume that the
endpoint distribution 𝜎obs and the success rate change depending on 𝐴.

Nevertheless, the changes in 𝜎obs and the success rate due to 𝐴 might be small in practice. This
is because extremely short 𝐴 values, where users can accomplish a pointing task with only a
single ballistic movement [17, 20], also reduce the impact on 𝜎obs according to Equation 11. If so,
then, from a practical viewpoint, it would not be problematic to apply Bi and Zhai’s success-rate
prediction model to pointing from an on-screen start; therefore, we empirically validated this.

4 EXPERIMENTS
We ran experiments involving 1D and 2D pointing tasks. For each dimensionality, we conducted
(a) successive pointing tasks in which a target appeared at a random position immediately after
the previous target was tapped and (b) discrete pointing tasks in which the target distance 𝐴

was predefined. Under condition (a), we disregarded the effect of movement distance; this was a
fair modification of Bi and Zhai’s success-rate prediction experiments [10] to an on-screen-start
condition. Under condition (b), we separately predicted the success rates for each value of 𝐴 to
empirically evaluate the effect of movement distance on the prediction accuracy. We thus conducted
four experiments composed of 1D and 2D target conditions:

Exp. 1. Successive 1D pointing task: horizontal bar targets appeared at random positions.
Exp. 2. Discrete 1D pointing task: a start bar and a target bar were displayed with distance 𝐴

between them.
Exp. 3. Successive 2D pointing task: circular targets appeared at random positions.
Exp. 4. Discrete 2D pointing task: a start circle and a target circle were displayed with distance

𝐴 between them.

Experiments 1 and 2 were conducted on the first day and performed by the same 12 participants.
Although we explicitly labeled these as Experiments 1 and 2, their order was balanced among the
12 participants. Similarly, on the second day, 12 participants were divided into two groups, and the
order of Experiments 3 and 4 was balanced. Each set of two experiments took less than 40 min per
participant.
We used an iPhone XS Max (2.5-GHz CPU; 4-GB RAM; iOS 12; 1242 × 2688 pixels, 6.5-inch

display, 458 ppi; 208 g). The experimental system was implemented with JavaScript, HTML, and
CSS. The web page was viewed with the Safari app. After eliminating the navigation-bar areas, the
canvas resolution was 414× 719 pixels, giving 5.978 pixels/mm. The system was set to run at 60 fps.
We used the takeoff positions as tap points, as in [8–10, 57, 58].

The participants were asked to sit in an office chair in a silent room. As shown in Figure 1a, each
participant held the smartphone with the nondominant (left) hand and tapped the screen with the
dominant (right) hand’s index finger. They were instructed not to rest their hands or elbows on
their laps.
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Start bar
A

WTarget

Start circle

AW

Target

b ca

Fig. 1. (a) Experimental environments, and the visual stimuli used in (b) Experiment 2 and (c) Experiment 4.

5 EXPERIMENT 1: 1D TASKWITH RANDOM AMPLITUDES
5.1 Participants
Twelve university students joined in this study (2 female, 10 male; 20 to 25 years, 𝑀 = 23.0,
𝑆𝐷 = 1.41). They were right-handed and daily smartphone users. Five participants used iOS
smartphones daily, and seven used Android smartphones. They each received 45 USD for performing
Experiments 1 and 2.

5.2 Task and Design
A 6-mm-high start bar was initially displayed at a random position on the screen.When a participant
tapped it, the first target bar immediately appeared at a random position. The participant was
tasked with successively tapping new targets that appeared upon lifting the finger off. If a target
was missed, a beep sounded, and the participant had to re-aim for the target. If the participant
succeeded, a bell sounded. To reduce the negative effect of screen edges, the random target position
was at least 11 mm away from the top and bottom screen edges [3].

This task had a single-factor within-subjects design with an independent variable of𝑊 : 2, 4, 6,
8, and 10 mm. Because the target distance from the previous target changed randomly, this task
required from ballistic to closed-loop motions. The dependent variables were the observed touch-
point distribution on the y-axis, 𝜎obsy , and the success rate. The touch-point bias was measured
from the target center with a sign [56]. First, the participants performed 20 trials as practice, which
included 4 repetitions of the 5𝑊 values appearing in random order. In each session, the𝑊 values
appeared 10 times in random order. The participants were instructed to successively tap the target
as quickly and accurately as possible in a single session. They each completed four sessions as
data-collection trials. In total, we recorded 5𝑊 × 10repetitions × 4sessions × 12participants = 2400 trials.

5.3 Results
We removed 13 outlier trials (0.54%) that had tap points at least 15 mm from the target center [9]2.
According to observation, such outliers resulted mainly from participants accidentally touching the
screen with the thumb or little finger. For consistency with Bi and Zhai’s work [10], we computed
the regression between 𝜎2

obsy
and𝑊 2 to validate Equation 4, compared the observed and computed

touch-point distributions (𝜎obsy and 𝜎regy , respectively), and compared the observed and predicted
success rates. Although our results showed that the dependent variables did not pass the Shapiro-
Wilk test (alpha = 0.05) in some cases, it is known that ANOVA is robust against violations of the
normality test assumptions [13, 36], and thus, we consistently ran repeated-measures ANOVAs.

2Using a fixed distance may affect𝑊 levels differently. For example, more outliers could be observed for𝑊 = 10 mm than
𝑊 = 2 mm. Yet, we here maintain consistency with the previous study [9].
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Fig. 2. 𝜎2obsy vs.𝑊
2 in Experiment 1. Fig. 3. Observed vs. predicted success rates in Experiment 1. Error

bars show 𝑆𝐷s across participants throughout this paper.

5.3.1 Touch-Point Distribution. The𝑊 had a significant main effect on 𝜎obsy (𝐹4,44 = 11.18,
𝑝 < 0.001, 𝜂2𝑝= 0.50). Shapiro-Wilk tests showed that the touch points followed normal distributions
under 47 of the 60 conditions (= 5𝑊 × 12participants), or 78.3%. Figure 2 shows the regression
expression for 𝜎2

obsy
versus𝑊 2 for validating Equation 4. The assumption of a linear relationship

for these variances even for touch-pointing operations with an on-screen start was supported with
𝑅2 = 0.9353. The differences between the computed 𝜎regy and observed 𝜎obsy values were less than
0.1 mm (< 1 pixel), as obtained by taking the square roots of the vertical distances between the
points and the regression line in Figure 2.

5.3.2 Success Rate. Among the 2387 (= 2400 − 13) non-outlier data points, the participants
successfully tapped the target in 2194 trials, or 91.91%. As shown by the blue bars in Figure 3, the
observed success rate increased from 71.55 to 99.79% with the increase in𝑊 , which had a significant
main effect (𝐹4,44 = 58.37, 𝑝 < 0.001, 𝜂2𝑝= 0.84).

By applying the regression expression 𝜎regy =
√
0.0154𝑊 2 + 1.0123 (from Figure 2) to Equation 10,

we computed the predicted success rates for each𝑊 , as represented by the red bars in Figure 3.
The difference from the observed success rate was 5.00 points (7.51%) at most. These results show
that we could predict the success rate solely from the target size𝑊 , with a mean absolute error
𝑀𝐴𝐸 of 1.657% for 𝑁 = 5 data points. This indicates the applicability of Bi and Zhai’s model with
our on-screen start condition.

6 EXPERIMENT 2: 1D TASKWITH PRESET AMPLITUDES
6.1 Task and Design
Figure 1b shows the visual stimulus used in Experiment 2. At the beginning of each trial, a 6-
mm-high blue start bar and a𝑊 -mm-high green target bar were displayed at random positions
with distance 𝐴 between them. When a participant tapped the start bar, it disappeared, and a click
sounded. Then, if the participant successfully tapped the target, a bell sounded, and the next start
and target bars appeared. If the participant missed the target, s/he had to aim at it until successfully
tapping it. In this case, the trial was not restarted from tapping the start bar. The participants were
instructed to tap the target as quickly and accurately as possible after tapping the start bar.

This study was a 4 × 5 within-subjects design. We included four 𝐴s (20, 30, 45, and 60 mm) and
five𝑊 s (2, 4, 6, 8, and 10 mm). This covered a wide range of IDs requiring ballistic to closed-loop
motions. Each 𝐴 ×𝑊 combination was used for 16 repetitions, following a single repetition of
practice trials. In total, we recorded 4𝐴 × 5𝑊 × 16repetitions × 12participants = 3840 trials.
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Fig. 4. 𝜎2obsy vs. 𝑊 2 in Experi-
ment 2.

Fig. 5. Observed vs. predicted success rates in Experiment 2.

6.2 Results
6.2.1 Touch-Point Distribution. We removed four outlier trials (0.10%) that had tap points at

least 15 mm from the target center. We found significant main effects of 𝐴 (𝐹3,33 = 2.949, 𝑝 < 0.05,
𝜂2𝑝= 0.21) and𝑊 (𝐹4,44 = 72.63, 𝑝 < 0.001, 𝜂2𝑝= 0.87) on 𝜎obsy , but no significant interaction of𝐴×𝑊
(𝐹12,132 = 1.371, 𝑝 = 0.187, 𝜂2𝑝= 0.11). We found that 218 of the 240 conditions (4𝐴×5𝑊 ×12participants)
passed the normality test, or 90.8%.

Figure 4 shows the regression expression for 𝜎2
obsy

versus𝑊 2, with 𝑅2 = 0.8141 for 4𝐴 × 5𝑊 = 20
data points. When we merged the four 𝜎2

obsy
values for each 𝐴 as we did with the amplitudes in

Experiment 1, we obtained five data points with 𝑅2 = 0.9171 (the regression constants did not
change). Using the regression expression 𝜎regy =

√
0.0191𝑊 2 + 0.9543 (from Figure 4), we computed

𝜎regy for each𝑊 . The differences between the 𝜎regy and 𝜎obsy values were less than 0.2 mm (∼1
pixel). As a check, the average 𝜎obsy values for 𝐴 = 20, 30, 45, and 60 mm were 1.345, 1.279, 1.319,
and 1.415 mm, respectively, giving a difference of 0.136 mm at most.

The conclusion of the small effect of 𝐴 was supported by a repeated-measures ANOVA; for 𝜎obsy ,
a pairwise test with Bonferroni correction as the 𝑝-value adjustment method showed only one pair
having a significant difference between 𝐴 = 45 and 60 mm (𝑝 < 0.05; |1.319 − 1.415| = 0.096 mm <
1 pixel). These results indicate that we could compute the touch-point distributions regardless of 𝐴
at a certain degree of accuracy in most cases.

6.2.2 Success Rate. Among the 3836 (= 3840 − 4) non-outlier data points, the participants
successfully tapped the target in 3489 trials, or 90.95%. We found significant main effects of 𝐴
(𝐹3,33 = 4.124, 𝑝 < 0.05, 𝜂2𝑝= 0.27) and𝑊 (𝐹4,44 = 45.03, 𝑝 < 0.001, 𝜂2𝑝= 0.80) on the success rate,
but no significant interaction of 𝐴 ×𝑊 (𝐹12,132 = 0.681, 𝑝 = 0.767, 𝜂2𝑝= 0.058). Figure 5 shows the
observed and predicted success rates. The largest difference was 77.60−67.53 = 10.07 points (14.9%)
under the condition of 𝐴 = 20 mm ×𝑊 = 2 mm. This is comparable to Bi and Zhai’s success-rate
prediction [10], in which the largest difference (9.74 points; 14.2%) was observed for𝑊 = 2.4 mm
for a 1D vertical bar target. In Experiment 2, the𝑀𝐴𝐸 was 3.266% for 𝑁 = 20 data points.

7 EXPERIMENT 3: 2D TASKWITH RANDOM AMPLITUDES
The experimental designs were almost entirely the same as in Experiments 1 and 2, except that
circular targets were used in Experiments 3 and 4. Here, the target size𝑊 means the circle’s diameter.
The random target positions were set at least 11 mm from the edges of the screen. For Experiment
3, we used the same task design as in Experiment 1: 5𝑊 × 40repetitions × 12participants = 2400 data
points.
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Fig. 6. 𝑊 2 vs. (a) 𝜎2obsx and (b) 𝜎2obsy in Experiment 3. Fig. 7. Observed vs. predicted success rates in
Experiment 3.

7.1 Participants
Twelve university students joined in this study (3 female, 9 male; 19 to 25 years,𝑀 = 22.2, 𝑆𝐷 = 2.12),
which included 9 new participants. All were right-handed and daily smartphone users. Nine of the
participants used iOS smartphones daily, and three used Android. They each received 45 USD for
performing Experiments 3 and 4.

7.2 Results
7.2.1 Touch-Point Distribution. We removed 33 outlier trials (1.375%) that had tap points at

least 15 mm from the target center. The𝑊 had significant main effects on 𝜎obsx (𝐹4,44 = 15.96,
𝑝 < 0.001, 𝜂2𝑝= 0.59) and 𝜎obsy (𝐹4,44 = 25.71, 𝑝 < 0.001, 𝜂2𝑝= 0.70). The touch points on the
𝑥- and 𝑦-axes followed normal distributions for 55 (91.7%) and 53 (88.3%) out of 60 conditions,
respectively. Under 41 (68.3%) conditions, the touch points followed bivariate normal distributions.
Figure 6 shows the regression expressions for 𝜎2

obsx
and 𝜎2

obsy
versus𝑊 2. Using these regressions

(𝜎regx =
√
0.0096𝑊 2 + 0.8079 and 𝜎regy =

√
0.0117𝑊 2 + 0.8076), we computed the touch-point

distributions for each𝑊 . The differences between the computed 𝜎reg and observed 𝜎obs values were
at most 0.05 and 0.2 mm for the 𝑥- and 𝑦-axes, respectively.

7.2.2 Success Rate. Among the 2367 (= 2400 − 33) non-outlier data points, the participants
successfully tapped the target in 2017 trials, or 85.21%. As shown by the blue bars in Figure 7, the
observed success rate increased from 50.84 to 99.58% with𝑊 , which had a significant main effect
(𝐹4,44 = 59.24, 𝑝 < 0.001, 𝜂2𝑝= 0.84). As represented by the red bars, we computed the predicted
success rates for each𝑊 by applying the regression expressions for 𝜎regx and 𝜎regy to Equation 8.
The differences from the observed success rates were less than 7 points (14.3% at most). These
results show that we could predict the success rate from the𝑊 , with𝑀𝐴𝐸 = 3.082% for 𝑁 = 5 data
points.

8 EXPERIMENT 4: 2D TASKWITH PRESET AMPLITUDES
We used the same task design as in Experiment 2: 4𝐴 × 5𝑊 × 16repetitions × 12participants = 3840 data
points. Figure 1c shows the visual stimulus.

8.1 Results
8.1.1 Touch-Point Distribution. We removed nine outlier trials (0.23%) that had tap points at

least 15 mm from the target center. For 𝜎obsx , we found a significant main effect of𝑊 (𝐹4,44 = 24.12,
𝑝 < 0.001, 𝜂2𝑝= 0.69), but not of 𝐴 (𝐹3,33 = 0.321, 𝑝 = 0.810, 𝜂2𝑝= 0.028). No significant interaction of
𝐴 ×𝑊 was found (𝐹12,132 = 0.950, 𝑝 = 0.500, 𝜂2𝑝= 0.079). For 𝜎obsy , we found significant main effects
of 𝐴 (𝐹3,33 = 3.833, 𝑝 < 0.05, 𝜂2𝑝= 0.26) and𝑊 (𝐹4,44 = 48.35, 𝑝 < 0.001, 𝜂2𝑝= 0.82), but no significant
interaction of 𝐴 ×𝑊 (𝐹12,132 = 1.662, 𝑝 = 0.082, 𝜂2𝑝= 0.13). Pairwise comparisons showed that only
𝐴 = 30 and 60 mm had a significant difference (𝑝 < 0.05). The touch points on the 𝑥- and 𝑦-axes
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Fig. 8. 𝑊 2 vs. (a) 𝜎2obsx and (b) 𝜎2obsy in Experi-
ment 4.

Fig. 9. Observed vs. predicted success rates in Experi-
ment 4.

followed normal distributions for 224 (93.3%) and 218 (90.8%) of the 240 conditions, respectively.
Under 184 (76.7%) conditions, the touch points followed bivariate normal distributions.
Figure 8 shows the regression expressions for 𝜎2

obsx
and 𝜎2

obsy
versus 𝑊 2, with 𝑅2 = 0.8201

and 0.7347, respectively, for 𝑁 = 20 data points. When we merged the four 𝜎2
obsx

and 𝜎2
obsy

val-
ues for each 𝐴, we obtained 𝑁 = 5 data points with 𝑅2 = 0.9137 and 0.9425, respectively (the
regression constants did not change). Using these regressions (𝜎regx =

√
0.0111𝑊 2 + 0.9227 and

𝜎regy =
√
0.0188𝑊 2 + 0.8366), we computed the touch-point distributions under each condition of

𝐴 ×𝑊 . The differences between the computed 𝜎reg and observed 𝜎obs values were less than 0.2 mm
on the 𝑥-axis and less than 0.5 mm on the 𝑦-axis.

8.1.2 Success Rate. Among the remaining 3831 (= 3840 − 9) non-outlier data points, 3145 trials
were successful (82.09%). We found a significant main effect of𝑊 (𝐹4,44 = 120.0, 𝑝 < 0.001, 𝜂2𝑝= 0.92),
but not of 𝐴 (𝐹3,33 = 2.100, 𝑝 = 0.119, 𝜂2𝑝= 0.16). The interaction of 𝐴 ×𝑊 was not significant
(𝐹12,132 = 0.960, 𝑝 = 0.490, 𝜂2𝑝= 0.080). Figure 9 shows the observed and predicted success rates. The
largest difference was 95.80 − 85.94 = 9.86 points (11.5%) for 𝐴 = 20 mm and𝑊 = 6 mm. The𝑀𝐴𝐸

was 3.671% for 𝑁 = 20 data points.

9 DISCUSSION
9.1 Accuracy in Predicting Success Rates
Throughout the experiments, the prediction errors were about as low as in Bi and Zhai’s pointing
tasks with an off-screen start [10]: 10.07 points (14.9%) at most in our case (for 𝐴 = 20 mm ×𝑊 = 2
mm in Experiment 2), versus 9.74 points (14.2%) at most in Bi and Zhai’s case (2.4 mm, vertical bar
target). As in their study, we found that the success rate approached 100% as𝑊 increased, and thus,
the prediction errors tended to become smaller. Therefore, the model accuracy should be judged
from the prediction errors for small targets.
The largest prediction error in Bi and Zhai [10] was under the condition of𝑊 = 2.4 mm. In

comparison, the largest prediction error in our experiments was under a condition with slightly
smaller targets of𝑊 = 2 mm. Also, while Bi and Zhai checked the prediction errors under nine
conditions in total [10] (three𝑊 values for three target shapes), we checked the prediction errors
under 5 + 20 + 5 + 20 = 50 conditions (Experiments 1 to 4, respectively). Thus, these differences may
have given more chances to show a higher prediction error in our tasks. In addition, although we
used 2 mm as the smallest𝑊 , such a small target is not often used in practical touch UIs. Therefore,
the slightly larger prediction error in our results should be less critical in actual usage.

We observed that the error rates in our experiments were sometimes higher than those in typical
pointing studies. For example, the maximum error rate was 56% (Experiment 4), but it is assumed
that the error rate should be close to 4% [35, 47]. However, as Gori et al. recently identified, this
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Fig. 10. Predicted success rate with respect to the𝑊 .

4% criterion is arbitrary, and error rates can change depending on the target size [18], which is
supported by existing empirical data [10, 15, 49, 54]. It is not unusual for the error rate to be quite
high, in particular for touch pointing tasks, e.g., an error rate of approximately 20% on average for
𝑊 = 3, 5, and 7-mm diameter circular targets [9] and 64% for 2.4-mm circles [10]. If we analyze only
the two largest target sizes (𝑊 = 8 and 10-mm conditions), the maximum error rate was 6.25% in
Experiment 4 (Figure 9,𝑊 = 8 mm, 𝐴 = 20-mm condition), which is not remarkably high compared
with previous studies. Therefore, the error rate is expected to increase as the target size decreases,
and thus, the chance for the prediction error to increase also increases.
We also found that our concern that the prediction accuracy might drop, depending on the 𝐴

values, was not a critical issue as compared with tasks using an off-screen start [10]. Hence, the
comparable prediction accuracy observed in our experiments empirically shows that Bi and Zhai’s
model can be applied to pointing tasks with an on-screen start, regardless of whether the effect of
𝐴 is averaged (Experiments 1 and 3) or not (2 and 4).

Figure 10 plots the predicted success rate with respect to𝑊 , which can help designers choose
the appropriate size for a GUI item. This also provides evidence that conducting costly user studies
to measure success rates for multiple𝑊 values has low scalability. For example, from the data in
Experiment 4, the success rates sharply rose from𝑊 = 1 to 6 mm. Hence, for example, even if the
error rate is measured for𝑊 = 2, 6, and 10 mm, it would be difficult to accurately predict error
rates for other𝑊 values such as 3 mm. Therefore, without an appropriate success-rate prediction
model, designers have to conduct user studies with fine-grained𝑊 values, e.g., 1 to 10 mm at 1-mm
intervals. However, 1-mm intervals are still not sufficient; the predicted success rate “jumps up”
from 41.3 to 67.0% for𝑊 = 2 and 3 mm, respectively. Therefore, this strategy should be considered
inappropriate due to the scalability issue, particularly for small targets.

9.2 Adequacy of Experiments
In our experiments, the endpoint distributions were not normal in some cases. Those results did not
pass the assumption of a dual Gaussian distribution model. Figure 11 allows us to visually check
the distributions. Some conditions did not exhibit normal distributions, e.g., Figure 11e showing a
dent at the peak. This could be partly due to the small numbers of trials in our experiments. Still,
according to the central limit theorem, it is reasonable to assume that the distributions should
approach normal after a sufficient number of trials.
We also checked the Fitts’ law fitness. Using the Shannon formulation [35], we found that the

error-free𝑀𝑇 data showed excellent fits3 for Experiments 2 and 4, respectively, by using 𝑁 = 20
data points; 𝑀𝑇 = 132.0 + 90.29 × log2 (𝐴/𝑊 + 1) with 𝑅2 = 0.9807 and 𝑀𝑇 = 114.3 + 97.91 ×
log2 (𝐴/𝑊 + 1) with 𝑅2 = 0.9900. The indexes of performance, 𝐼𝑃 (= 1/𝑠𝑙𝑜𝑝𝑒), were 11.08 and 10.21

3Results for the effective width method [12, 35] and FFitts law [8] obtained by taking failure trials into account were also
analyzed. Because of space limitations, we decided to focus on success-rate prediction in this paper.
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a W = 2 mm c W = 6 mm e W = 10 mmd W = 8 mmb W = 4 mm

f W = 2 mm h W = 6 mm j W = 10 mmi W = 8 mmg W = 4 mm

Fig. 11. Histograms and 95% confidence ellipses using the all non-outlier data in Experiments (a–e) 1 and
(f–j) 3. For 1D tasks, the histograms show the frequencies of tap positions, the dashed curved lines show the
normal distributions using the mean and 𝜎obsy data, the two red bars are the borderlines of the target, and
the black bar shows the mean of tap positions. For 2D tasks, the blues dots are tap positions, the light blue
ellipses are 95% confidence ellipses of tap positions, and the red dashed circles are target areas. For all tasks,
the 0-mm positions on the x- and y-axes were aligned to the centers of targets.

bits/s, close to those in Pedersen and Hornbæk’s report on error-free𝑀𝑇 analysis (11.11–12.50 bits/s
for 1D touch-pointing tasks) [43]. Therefore, we conclude that both participant groups appropriately
followed our instruction on trying to balance speed and accuracy.

9.3 Internal and External Validity of Prediction Parameters
Because the main scope of our study did not include testing the external validity of the prediction
parameters in equations (𝛼 and 𝜎a), it is sufficient that the observed and predicted success rates
internally matched the participant group. Yet, it is still worth discussing the external validity of the
prediction parameters for better understanding of the dual Gaussian distribution hypothesis.
Bi and Zhai measured the parameters of 𝛼 and 𝜎a in their earlier study [9]. Those parameters

were then used in Equations 8 and 10 to predict the success rates [10]. Because the participants
in those two studies differed, the parameters of 𝛼 and 𝜎a could have had external validity. This
validated Bi et al.’s assumption: “Assuming finger size and shape do not vary drastically across
users, 𝜎a could be used across users as an approximation” [8].

The top-left panel of Figure 12 shows the predicted success rates in the 1D tasks. In addition to
the prediction data reported in Figures 3 and 5, we also computed the predicted success rates by
using the 𝜎obsy values measured in the 2D tasks of Experiments 3 and 4. The actual success rate
in Experiment 1 under the condition of𝑊 = 2 mm was 71.55% (top-right panel of Figure 12), and
those in Experiment 2 ranged from 71.73 to 77.60%. Therefore, we conclude that using the 𝜎obsy
values measured in the 2D tasks would allow us to predict more accurate success rates for 1D tasks.
Here, using Bi and Zhai’s generic 𝜎obsy value [10] allows us to predict the success rate (60.66%), but
this is not as close as ours to the actual data. Note that three students participated on both days in
our study; this is not a complete comparison as an external validity check.
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Fig. 12. Comparison of predicted (left) vs. observed (right) success rates from our data and Bi and Zhai’s [10]
for 1D (top) and 2D (bottom) tasks.

We also tried to determine whether the success rates in the 2D tasks could be predicted from Bi
and Zhai’s data, as shown in the bottom-left panel of Figure 12. Because Bi and Zhai’s data for 𝜎a
was larger than ours, their predicted success rates tended to be lower. Furthermore, because the
actual success rate was over 50% for𝑊 = 2mm in Experiment 3 (bottom-right panel of Figure 12), Bi
and Zhai’s prediction parameters could not be used to predict the success rates in our experiments.
Note that using Bi and Zhai’s prediction parameters for the index finger [10] instead of generic
parameters would not influence this conclusion.

Possible explanations for why Bi and Zhai’s parameters did not fit for our data include differences
in user groups and devices. This result supports Bi, Li, and Zhai’s hypothesis that 𝜎a may vary with
an individual’s finger size or motor impairment (e.g., tremor, or lack of) [8]. The fact that the model
parameters 𝛼 and 𝜎a can change depending on the user group and thus affect the success-rate
prediction accuracy is an empirically demonstrated limitation on the generalizability of the dual
Gaussian distribution hypothesis. This is one of the novel findings of our study, as it has never
been shown with such evidence.

In the case that the properties of the main users of an app or the visitors to a website are already
known (e.g., an education app that is mainly used by children 10–12 years old), this result suggests
that designers should choose the appropriate participants for measuring the prediction parameters
𝛼 and 𝜎a to further increase the prediction accuracy of the success rate. For example, Leitão and
Silva listed various apps having large buttons and swipe widgets suitable for older adults (Figures
1–11 in [33]). In addition, if designers can conduct several experiments with various user groups,
designing UIs differently according to the users would also be beneficial and has been already
adopted. For example, on YouTube Kids [29], the button size is auto-personalized depending on
the age listed in the user’s account information. Our results can help with such optimization and
personalization according to the characteristics of the target users.

9.4 Potential Improvements by Integrating the Target Distance
Because we observed that 𝐴 significantly affected 𝜎obsy values in Experiments 2 and 4, the accuracy
in predicting the success rate would be potentially improved by integrating the 𝐴 factor. However,
the results showed no strong benefits of using 𝐴 for prediction, as summarized in Table 1.
Because the candidate formulations for modeling 𝜎obs values had different numbers of free

parameters, we used the adjusted 𝑅2. We also compared models with the Akaike information
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criterion (𝐴𝐼𝐶) values [1]. This balanced the model complexity and the fitness to determine the
comparatively best model. A model with a lower 𝐴𝐼𝐶 value is a better one, and a model with an
𝐴𝐼𝐶 that is greater than 𝐴𝐼𝐶minimum + 10 is a significantly worse one. However, the 𝐴𝐼𝐶 value tends
to be smaller for a model with more free parameters if the number of measured data points is large
(here, 𝑁 = 20 = 4𝑊 × 5𝐴). To address this, we also used the Bayesian information criterion 𝐵𝐼𝐶 [28].
A model with a lower 𝐵𝐼𝐶 is better. The strengths for judging a significant difference in 𝐵𝐼𝐶 are:
0–2 indicates no significant difference, 2–6 is positive, 6–10 is strong, and >10 is very strong [28].

9.4.1 Experiment 2. The results showed that 𝐴 had significant main effects on 𝜎obsy and the
success rate. The interactions of 𝐴 ×𝑊 on 𝜎obsy and the success rate were not significant; thus, 𝐴
and𝑊 independently affected 𝜎obsy . First, in Section 6.2, we reported the linear regression result
using Equation 4 (𝜎2

obs = 𝛼𝑊 2 + 𝜎2
a ) for 𝑁 = 20 data points. This result is shown as Model #1 in

Table 1. Second, to take the effect of 𝐴 into account, we integrated Equation 4 (𝜎2
obs = 𝛼𝑊 2 + 𝜎2

a )
and Equation 11 (𝜎2

obs = 𝛽𝐴2 + 𝛾 ), and thus, we obtained:

𝜎2
obs = 𝛼𝑊 2 + 𝛽𝐴2 + intercept (12)

where the intercept is 𝜎2
a + 𝛾 . This addition is achieved because the variances of two independent

normal distributions can be additive and the covariance of𝑊 2 and 𝐴2 is zero. The result is shown
as Model #2 in Table 1. Compared with Model #1, the adjusted 𝑅2 value increased from 0.8038 to
0.8125. However, according to the 𝐴𝐼𝐶 and 𝐵𝐼𝐶 criteria, there were no significant differences in
predicting the 𝜎obsy value. Regarding the success-rate prediction, the results were slightly better for
Model #2 for all three metrics. Therefore, we found that Model #2 had a slightly better prediction
accuracy over Model #1.

9.4.2 Experiment 4. The results showed that 𝐴 had a significant main effect on 𝜎obsy , but not
for 𝜎obsx and the success rate. Also, interactions of 𝐴 ×𝑊 were not found for 𝜎obsx , 𝜎obsy , and the
success rate. In the same manner as with Experiment 2, we report the model fitness in terms of
predicting 𝜎obsx and 𝜎obsy using Equations 4 and 12, as listed in Table 1.
In Section 8.1, we reported the results of using Equation 4, which ignores the effects of 𝐴 on

𝜎obsx and 𝜎obsy . These results correspond to Models #3 and #4. Next, we took the effects of 𝐴 into
account, as shown as Models #5 and #6. Comparing these results, we found that using Equation 12
is effective for predicting 𝜎obsy , but using Equation 4 is better for 𝜎obsx . This would be because the
𝐴 had a significant effect only for 𝜎obsy . Thus, using Equation 12 for 𝜎obsy while using Equation 4
for 𝜎obsx is a more empirically sound approach. This result is shown in the bottom row in Table 1.
However, the accuracy in predicting the success rate is worse than always using Equation 4.

In summary, an improvement in success-rate prediction was observed only for the results from
Experiment 2. Still, for the results from Experiment 2, the improvement is not remarkable; the
difference in the 𝑅2 of the observed vs. predicted values was 0.01, the 𝑀𝐴𝐸 difference was 0.03
points, and the maximum prediction error (diffmax) difference was 0.95 points (1.4%). Also, this
improvement should come from the higher model fitness for 𝜎obsy , but this is not evident according
to the 𝐴𝐼𝐶 and 𝐵𝐼𝐶 criteria. These results prevent us from claiming that we should take the effect
of 𝐴 into account to predict the success rate. As we showed, integrating 𝐴 to regress the 𝜎obs values
did not improve the fitness significantly, and thus, we identified that Bi and Zhai’s decision not to
test 𝐴 as an independent variable in their experiment was a reasonable choice (e.g., for increasing
the numbers of repetitions for each𝑊 condition).
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Table 1. Model fitting and prediction accuracy using different formulations to predict the 𝜎2obs for the data
from Experiments 2 and 4. diffmax is the maximum prediction error between the predicted versus observed
success rates for 𝑁 = 20 data points.

Variance (𝜎2) fitting by linear regression Success-rate prediction
Exp. Eq. Model adj. 𝑅2 𝐴𝐼𝐶 𝐵𝐼𝐶 𝑅2 𝑀𝐴𝐸 (%) diffmax (points & %)

2 4 (#1) 𝜎2
obsy

= 0.01915𝑊 2 + 0.9543 0.8038 16.73 13.73 0.9242 3.266 10.07 (14.9%)
12 (#2) 𝜎2

obsy
= 0.01915𝑊 2 + 0.00008031𝐴2 + 0.8153 0.8125 16.69 14.68 0.9349 3.236 9.057 (13.5%)

3

4 (#3) 𝜎2
obsx

= 0.01105𝑊 2 + 0.9227 0.8102 -6.038 -9.043 0.9753 3.671 9.859 (10.30%)
(#4) 𝜎2

obsy
= 0.01885𝑊 2 + 0.8366 0.7200 25.28 22.27

12 (#5) 𝜎2
obsx

= 0.01105𝑊 2 + 0.00001644𝐴2 + 0.8943 0.8015 -4.295 -6.303 0.9620 3.744 11.02 (11.36%)
(#6) 𝜎2

obsy
= 0.01885𝑊 2 + 0.0001776𝐴2 + 0.5291 0.7955 19.85 17.84

𝐴’s effect only for 𝜎2
obsy

; use Model #3 for 𝜎2
obsx

and Model #6 for 𝜎2
obsy

0.9639 3.678 10.93 (11.28%)

9.5 Limitations and Future Work
Our findings are somewhat limited by the experimental conditions, such as the 𝐴 and𝑊 values
used in the tasks. In particular, much longer 𝐴 values have been tested in touch-pointing studies,
e.g., 20 cm [34]. Hence, our conclusions are limited to small screens. The limited range of 𝐴 values
provides one possible reason why we observed only two pairs having significant differences in 𝜎obs
(between 𝐴 = 45 and 60 mm in Experiment 2 and 𝐴 = 30 and 60 mm in Experiment 4). In addition,
Bi and Zhai measured prediction parameters for using both the thumb in a one-handed posture
and the index finger [9], and they also measured the success rates in 1D pointing with a vertical
bar target [10]. If we conduct user studies under such conditions, they would provide additional
contributions in the future.
Our experiments required the participants to balance speed and accuracy. In other words, the

participants could take their time if necessary. The success rate has been shown to vary nonlinearly
depending on whether users try to shorten the operation time or aim carefully [52, 54, 55]. Our
experimental instructions covered just one case among the various situations of touch selection.

10 CONCLUSION
We discussed the applicability of Bi and Zhai’s success-rate prediction model [10] to pointing
tasks starting on-screen. The potential concern about an on-screen start in such tasks was that
the movement distance 𝐴 is both implicitly and explicitly defined, and previous studies suggested
that the 𝐴 value would influence the endpoint variability. We empirically showed the validity of
the model in four experiments. The prediction error was at most 10.07 points (14.9%) among 50
conditions in total. Also, we found that the effectiveness of integrating𝐴 to predict the success rates
was limited. Our results indicate that designers and researchers can accurately predict the success
rate by using a single model, regardless of whether a user taps a certain GUI item by moving a
finger to the screen or keeping it close to the surface as in keyboard typing. Our findings will be
beneficial for designing better touch GUIs and for automatically generating and optimizing UIs.
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